The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework

被引:68
作者
Hieber, Matthias [1 ]
Shibata, Yoshihiro [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Waseda Univ, Sch Sci, Shinjyuku Ku, Tokyo 169, Japan
关键词
INITIAL DATA; OBSTACLE; EULER;
D O I
10.1007/s00209-009-0525-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Navier-Stokes equations in the rotational framework. It is proved that these equations possess a unique global mild solution for arbitrary speed of rotation provided the initial data u(0) is small enough in the H(sigma)(1/2)(R(3))-norm.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 16 条
  • [1] Babin A, 1997, ASYMPTOTIC ANAL, V15, P103
  • [2] Babin A, 2001, INDIANA U MATH J, V50, P1
  • [3] Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics
    Cao, Chongsheng
    Titi, Edriss S.
    [J]. ANNALS OF MATHEMATICS, 2007, 166 (01) : 245 - 267
  • [4] Chemin J.-Y., 2006, MATH GEOPHYS
  • [5] Chemin J-Y., 2002, ANISOTROPY DISPERSIO
  • [6] Strong solutions to the navier-stokes equations around a rotating obstacle
    Galdi, GP
    Silvestre, AL
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (03) : 331 - 350
  • [7] Lp-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle
    Geissert, Matthias
    Heck, Horst
    Hieber, Matthias
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 596 : 45 - 62
  • [8] GIGA Y, 2007, ARCH RATION MECH ANA
  • [9] Giga Y., 1999, Quad.Mat., V4, P28
  • [10] Giga Y., 2006, HOKKAIDO MATH J, V35, P321