Calculation of homoclinic and heteroclinic orbits in 1D maps

被引:8
|
作者
Avrutin, Viktor [1 ,3 ]
Schenke, Bjoern [2 ]
Gardini, Laura [3 ]
机构
[1] Univ Stuttgart, IST, Stuttgart, Germany
[2] Univ Stuttgart, IPVS, Stuttgart, Germany
[3] Univ Urbino, DESP, I-61029 Urbino, Italy
关键词
Homoclinic orbits; Heteroclinic connections; Algorithms; Homoclinic and heteroclinic bifurcations; Piecewise smooth maps; Discontinuous maps; Chaotic attractors; SNAP-BACK REPELLERS; CHAOTIC ATTRACTORS; ROBUST CHAOS; SCENARIO; CRISIS;
D O I
10.1016/j.cnsns.2014.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Homoclinic orbits and heteroclinic connections are important in several contexts, in particular for a proof of the existence of chaos and for the description of bifurcations of chaotic attractors. In this work we discuss an algorithm for their numerical detection in smooth or piecewise smooth, continuous or discontinuous maps. The algorithm is based on the convergence of orbits in backward time and is therefore applicable to expanding fixed points and cycles. For simplicity, we present the algorithm using 1D maps. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1201 / 1214
页数:14
相关论文
共 38 条
  • [1] Interactive Initialization and Continuation of Homoclinic and Heteroclinic Orbits in MATLAB
    De Witte, Virginie
    Govaerts, Willy
    Kuznetsov, Yuri A.
    Friedman, Mark
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (03):
  • [2] Computation and continuation of homoclinic and heteroclinic orbits with arclength parameterization
    Liu, LX
    Moore, G
    Russell, RD
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) : 69 - 93
  • [3] Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems
    El-Dessoky, M. M.
    Yassen, M. T.
    Saleh, E.
    Aly, E. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11859 - 11870
  • [4] Homoclinic orbits and chaos in discretized perturbed NLS systems .1. Homoclinic orbits
    Li, Y
    McLaughlin, DW
    JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (03) : 211 - 269
  • [5] Distribution of Maps with Transversal Homoclinic Orbits in a Continuous Map Space
    Xing, Qiuju
    Shi, Yuming
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [6] Breakdown mechanisms of normally hyperbolic invariant manifolds in terms of unstable periodic orbits and homoclinic/heteroclinic orbits in Hamiltonian systems
    Teramoto, Hiroshi
    Toda, Mikito
    Komatsuzaki, Tamiki
    NONLINEARITY, 2015, 28 (08) : 2677 - 2698
  • [7] Influence of harmonic and bounded noise excitations on chaotic motion of Duffing oscillator with homoclinic and heteroclinic orbits
    Yang, XL
    Xu, W
    Sun, ZK
    ACTA PHYSICA SINICA, 2006, 55 (04) : 1678 - 1686
  • [8] Numerical determination of homoclinic and heteroclinic orbits at collinear equilibria in the restricted three-body problem with oblateness
    Kalantonis, VS
    Douskos, CN
    Perdios, EA
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2006, 94 (02) : 135 - 153
  • [9] Numerical Determination of Homoclinic and Heteroclinic Orbits at Collinear Equilibria in the Restricted Three-Body Problem with Oblateness
    V. S. Kalantonis
    C. N. Douskos
    E. A. Perdios
    Celestial Mechanics and Dynamical Astronomy, 2006, 94 : 135 - 153
  • [10] Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
    Gouveia, Marcio R. A.
    Messias, Marcelo
    Pessoa, Claudio
    NONLINEAR DYNAMICS, 2016, 84 (02) : 703 - 713