UNIFORM HYPERBOLICITY OF THE CURVE GRAPHS

被引:58
作者
Bowditch, Brian H. [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
uniform hyperbolicity; curve graph; surface; GEOMETRY; COMPLEX;
D O I
10.2140/pjm.2014.269.269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there is a universal constant, k, such that the curve graph associated to any compact orientable surface is k-hyperbolic. Independent proofs of this have been given by Aougab, by Hensel, Przytycki and Webb, and by Clay, Rafi and Schleimer.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 13 条
[1]   Uniform hyperbolicity of the graphs of curves [J].
Aougab, Tarik .
GEOMETRY & TOPOLOGY, 2013, 17 (05) :2855-2875
[2]   Intersection numbers and the hyperbolicity of the curve conplex [J].
Bowditch, Brian H. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 598 :105-129
[3]  
Clay M., 2013, ARXIV13025519
[4]   On the definition of word hyperbolic groups [J].
Gilman, RH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (03) :529-541
[5]  
Gromov M., 1987, ESSAYS GROUP THEORY, P75, DOI 10.1007/978-1-4613-9586-7_3
[6]  
Harvey William., 1981, Ann. of Math. Stud, V97, P245
[7]  
Hensel S., 2013, J EUR MATH IN PRESS
[8]   Geometry of the complex of curves I: Hyperbolicity [J].
Masur, HA ;
Minsky, YN .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :103-149
[9]   Geometry of the complex of curves II: Hierarchical structure [J].
Masur, HA ;
Minsky, YN .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) :902-974
[10]  
Masur H, 2013, J AM MATH SOC, V26, P1