Local a Posteriori error estimates and adaptive control of pollution effects

被引:26
作者
Liao, XH [1 ]
Nochetto, RH [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
linear elliptic problems; finite elements; local a posteriori error estimators; adaptive mesh refinement; quasi-optimal meshes;
D O I
10.1002/num.10053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local a posteriori error estimators are derived for linear elliptic problems over general polygonal domains in 2d. The estimators lead to a sharp upper bound for the energy error in a local region of interest. This upper bound consists of H-1-type local error indicators in a slightly larger subdomain, plus weighted L-2-type local error indicators outside this subdomain, which account for the pollution effects. This constitutes the basis of a local adaptive refinement procedure. Numerical experiments show a superior performance than the standard global procedure as well as the generation of locally quasi-optimal meshes. (C) 2003 Wiley Periodicals. Inc.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 25 条
[11]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[12]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :43-77
[13]   ADAPTIVE GLOBAL-LOCAL REFINEMENT STRATEGY BASED ON THE INTERIOR ERROR-ESTIMATES OF THE H-METHOD [J].
FISH, J ;
MARKOLEFAS, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (05) :827-838
[14]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[15]  
Kondratiev V., 1967, T MOSKOV MATEM OBSHC, V16, P209
[16]  
Kozlov V.A., 1997, Mathematical Surveys and Monographs, V52
[17]   Data oscillation and convergence of adaptive FEM [J].
Morin, P ;
Nochetto, RH ;
Siebert, KG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :466-488
[18]  
NITSCHE JA, 1974, MATH COMPUT, V28, P937, DOI 10.1090/S0025-5718-1974-0373325-9
[19]  
SCHATZ AH, 1977, MATH COMPUT, V31, P414, DOI 10.1090/S0025-5718-1977-0431753-X
[20]   INTERIOR MAXIMUM-NORM ESTIMATES FOR FINITE-ELEMENT METHODS .2. [J].
SCHATZ, AH ;
WAHLBIN, LB .
MATHEMATICS OF COMPUTATION, 1995, 64 (211) :907-928