Local a Posteriori error estimates and adaptive control of pollution effects

被引:26
作者
Liao, XH [1 ]
Nochetto, RH [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
linear elliptic problems; finite elements; local a posteriori error estimators; adaptive mesh refinement; quasi-optimal meshes;
D O I
10.1002/num.10053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local a posteriori error estimators are derived for linear elliptic problems over general polygonal domains in 2d. The estimators lead to a sharp upper bound for the energy error in a local region of interest. This upper bound consists of H-1-type local error indicators in a slightly larger subdomain, plus weighted L-2-type local error indicators outside this subdomain, which account for the pollution effects. This constitutes the basis of a local adaptive refinement procedure. Numerical experiments show a superior performance than the standard global procedure as well as the generation of locally quasi-optimal meshes. (C) 2003 Wiley Periodicals. Inc.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 25 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], POSTERIORI ERROR EST
[3]  
[Anonymous], RAIRO RAN R
[4]   A-POSTERIORI ESTIMATION AND ADAPTIVE-CONTROL OF THE POLLUTION ERROR IN THE H-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (24) :4207-4235
[5]  
Babuska I., 1994, Finite Elements in Analysis and Design, V17, P273, DOI 10.1016/0168-874X(94)90003-5
[6]  
BABUSKA I, 1978, INT J NUMER METH ENG, V82, P1587
[7]  
BECKER R, 1998, ENUMATH 95
[8]  
BECKER R, 1996, J NUMER MATH, V4, P237
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]  
DAUGE M, 1988, LECT NOTES MATH, V1341