Background Subtraction in Video Using Recursive Mixture Models, Spatio-Temporal Filtering and Shadow Removal

被引:0
作者
Chen, Zezhi [1 ]
Pears, Nick [2 ]
Freeman, Michael [2 ]
Austin, Jim [1 ,2 ]
机构
[1] Cybula Ltd, York, N Yorkshire, England
[2] Univ York, Dept Comp Sci, York, N Yorkshire, England
来源
ADVANCES IN VISUAL COMPUTING, PT 2, PROCEEDINGS | 2009年 / 5876卷
关键词
DENSITY-ESTIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe our approach to segmenting moving objects from the color video data supplied by a nominally stationary camera. There are two main contributions in our work. The first contribution augments Zivkovic and Heijden's recursively updated Gaussian mixture model approach, with a multidimensional Gaussian kernel spatio-temporal smoothing transform. We show that this improves the segmentation performance of the original approach, particularly in adverse imaging conditions, such as when there is camera vibration. Our second contribution is to present a comprehensive comparative evaluation of shadow and highlight detection appoaches, which is an essential component of background subtraction in unconstrained outdoor scenes. A comparative evelaution of these approaches over different color-spaces is currently lacking in the literature. We show that both segmentation and shadow removal performs best when we use RGB color spaces.
引用
收藏
页码:1141 / +
页数:2
相关论文
共 17 条
[1]  
[Anonymous], 2006, P ACMSIGKDD INT C KN
[2]  
[Anonymous], 2000, P EUR C COMP VIS
[3]  
[Anonymous], 2002, P IM VIS COMP NZ 200
[4]   Mean shift: A robust approach toward feature space analysis [J].
Comaniciu, D ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) :603-619
[5]   Detecting moving objects, ghosts, and shadows in video streams [J].
Cucchiara, R ;
Grana, C ;
Piccardi, M ;
Prati, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) :1337-1342
[6]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[7]  
Finlayson GD, 2002, LECT NOTES COMPUT SC, V2353, P823
[8]  
Friedman N., 1997, PROC UNCERTAINTY ART, P175
[9]  
Goel D, 2007, IEEE IMAGE PROC, P1357
[10]  
HORPRASERT T, 1999, P IEEE ICCV 1999 FRA