Information retrieval systems adapted to the biomedical domain

被引:5
|
作者
Marrero, Monica [1 ]
Sanchez-Cuadrado, Sonia [1 ]
Urbano, Julian [1 ]
Morato, Jorge [1 ]
Moreiro, Jose-Antonio [1 ]
机构
[1] Univ Carlos III Madrid, E-28903 Getafe, Spain
来源
PROFESIONAL DE LA INFORMACION | 2010年 / 19卷 / 03期
关键词
Biomedicine; BioNER; BioNLP; Text-mining; Information retrieval; Natural Language Processing; NLP; GENE NAME; ONTOLOGIES; TEXTS;
D O I
10.3145/epi.2010.may.04
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
The terminology used in biomedicine has lexical characteristics that have required the elaboration of terminological resources and information retrieval systems with specific functionalities. The main characteristics are the high rates of synonymy and homonymy, due to phenomena such as the pro-liferation of polysemic acronyms and their interaction with common language. Information retrieval systems in the biomedical domain use techniques oriented to the treatment of these lexical peculiarities. In this paper we review some of these techniques, such as the application of Natural Language Processing (BioNLP), the incorporation of lexical-semantic resources, and the application of Named Entity Recognition (BioNER). Finally, we present the evaluation methods adopted to assess the suitability of these techniques for retrieving biomedical resources.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 50 条
  • [1] Adapted information retrieval in Web Information Systems using PUMAS
    Carrillo-Ramos, Angela
    Gensel, Jerome
    Villanova-Oliver, Marlene
    Martin, Herve
    AGENT-ORIENTED INFORMATION SYSTEMS III, 2006, 3529 : 243 - +
  • [2] Biomedical Semantic Information Retrieval
    Lopez-Ubeda, Pilar
    Carlos Diaz-Galiano, Manuel
    Montejo-Raez, Arturo
    Martinez-Santiago, Fernando
    Andreu-Marin, Alberto
    Teresa Martin-Valdivia, M.
    Urena Lopez, L. Alfonso
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2018, (61): : 189 - 192
  • [3] Hairpins in bookstacks: Information retrieval from biomedical text
    Shatkay, H
    BRIEFINGS IN BIOINFORMATICS, 2005, 6 (03) : 222 - 238
  • [4] A Transformer-Based Framework for Biomedical Information Retrieval Systems
    Hall, Karl
    Jayne, Chrisina
    Chang, Victor
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 317 - 331
  • [5] Semantics-driven modelling of user preferences for information retrieval in the biomedical domain
    Gladun, Anatoly
    Rogushina, Julia
    Valencia-Garcia, Rafael
    Martinez Bejar, Rodrigo
    INFORMATICS FOR HEALTH & SOCIAL CARE, 2013, 38 (02) : 150 - 170
  • [6] Exploration of Domain Relevance by Legal Professionals in Information Retrieval Systems
    Wiggers, Gineke
    Verberne, Suzan
    Zwenne, Gerrit-Jan
    Van Loon, Wouter
    LEGAL INFORMATION MANAGEMENT, 2022, 22 (01) : 49 - 67
  • [7] Comparative Analysis of Information Retrieval using Ontology Based vs Traditional Information Systems in Food Science Domain
    Padmavathi, T.
    DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY, 2020, 40 (02): : 437 - 444
  • [8] Care episode retrieval: distributional semantic models for information retrieval in the clinical domain
    Hans Moen
    Filip Ginter
    Erwin Marsi
    Laura-Maria Peltonen
    Tapio Salakoski
    Sanna Salanterä
    BMC Medical Informatics and Decision Making, 15
  • [9] Bibliometric Data Fusion for Biomedical Information Retrieval
    Breuer, Timo
    Kreutz, Christin Katharina
    Schaer, Philipp
    Tunger, Dirk
    2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL, 2023, : 107 - 118
  • [10] Development of an information retrieval tool for biomedical patents
    Alves, Tiago
    Rodrigues, Ruben
    Costa, Hugo
    Rocha, Miguel
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 159 : 125 - 134