Computer simulations of structures and properties of the biomaterial hydroxyapatite

被引:54
作者
de Leeuw, N. H. [1 ,2 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Univ Coll London, Inst Orthopaed & Musculoskeletal Sci, Stanmore HA7 4LP, Middx, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 英国自然环境研究理事会; 英国惠康基金;
关键词
DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS SIMULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CITRIC-ACID; MECHANICAL-PROPERTIES; SURFACE-STRUCTURE; CARBONATED HYDROXYAPATITE; THERMODYNAMIC PROPERTIES; 01(1)OVER-BAR0 SURFACES;
D O I
10.1039/b921400c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbonated hydroxyapatite is the major mineral phase in natural bone and teeth and is therefore an attractive material for use in tissue replacement applications. However, its successful application as a biomaterial requires a detailed understanding of its bulk and surface structures, defect chemistry, growth and dissolution behaviour and interaction with complex biomolecules. Computer modelling can aid experiment by investigating at the atomic level highly complex structures, properties and processes, which are still difficult or impossible to access with experimental techniques. Here, we describe our use of a combination of complementary computational techniques to investigate a number of topical issues relevant to the use of hydroxyapatite in biomaterials applications, including the bulk and surface structures of the pure material; the structure and location of carbonate impurities in the lattice; the uptake of fluoride and its effect on hydroxyapatite dissolution; and crystal growth inhibition by citric acid.
引用
收藏
页码:5376 / 5389
页数:14
相关论文
共 126 条
[1]   Modelling the interaction of a Hyp-Pro-Gly peptide with hydroxyapatite surfaces in aqueous environment [J].
Almora-Barrios, Neyvis ;
de Leeuw, Nora H. .
CRYSTENGCOMM, 2010, 12 (03) :960-967
[2]   Density Functional Theory Study of the Binding of Glycine, Proline, and Hydroxyproline to the Hydroxyapatite (0001) and (01(1)over-bar0) Surfaces [J].
Almora-Barrios, Neyvis ;
Austen, Kat F. ;
de Leeuw, Nora H. .
LANGMUIR, 2009, 25 (09) :5018-5025
[3]  
[Anonymous], 1994, STUD ORG CHEM
[4]  
[Anonymous], 1988, International series of monographs on physics
[5]   Theoretical analysis of hydroxylapatite and its main precursors by quantum mechanics and HREM image simulation [J].
Ascencio, JA ;
Rodríguez-Lugo, V ;
Angeles, C ;
Santamaría, T ;
Castaño, VM .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 25 (03) :413-426
[6]   Ab initio simulation of Si-doped hydroxyapatite [J].
Astala, R ;
Calderín, L ;
Yin, X ;
Stott, MJ .
CHEMISTRY OF MATERIALS, 2006, 18 (02) :413-422
[7]   First principles investigation of mineral component of bone:: CO3 substitutions in hydroxyapatite [J].
Astala, R ;
Stott, MJ .
CHEMISTRY OF MATERIALS, 2005, 17 (16) :4125-4133
[8]   First-principles study of hydroxyapatite surfaces and water adsorption [J].
Astala, R. ;
Stottt, M. J. .
PHYSICAL REVIEW B, 2008, 78 (07)
[9]   Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters [J].
Baig, AA ;
Fox, JL ;
Young, RA ;
Wang, Z ;
Hsu, J ;
Higuchi, WI ;
Chhettry, A ;
Zhuang, H ;
Otsuka, M .
CALCIFIED TISSUE INTERNATIONAL, 1999, 64 (05) :437-449
[10]   Predictive modeling of the mechanical properties of particulate hydroxyapatite reinforced polymer composites [J].
Balac, I ;
Uskokovic, PS ;
Aleksic, R ;
Uskokovic, D .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 63 (06) :793-799