Adipose-derived adult stem cells for cartilage tissue engineering

被引:1
作者
Guilak, F
Awad, HA
Fermor, B
Leddy, HA
Gimble, JM
机构
[1] Duke Univ, Med Ctr, Dept Surg, Div Orthopaed Surg, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Biomed Engn, Durham, NC 27710 USA
[3] Louisiana State Univ Syst, Pennington Biomed Res Ctr, Baton Rouge, LA 70808 USA
关键词
articular cartilage; chondrocyte; pre-adipocyte; stromal cell; osteoarthritis; collagen; proteoglycan;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue-engineered repair of cartilage. In particular, there has been significant emphasis on the use of undifferentiated progenitor cells, or "stem" cells that can be expanded in culture and differentiated into a variety of different cell types. Recent studies have identified the presence of an abundant source of stem cells in subcutaneous adipose tissue. These cells, termed adipose-derived adult stem (ADAS) cells, show characteristics of multipotent adult stein cells, similar to those of bone marrow derived mesenchymal stem cells (MSCs), and under appropriate culture conditions, synthesize cartilage-specific matrix proteins that are assembled in a cartilaginous extracellular matrix. The growth and chondrogenic differentiation of ADAS cells is strongly influenced by factors in the biochemical as well as biophysical environment of the cells. Furthermore, there is strong evidence that the interaction between the cells, the extracellular biomaterial substrate, and growth factors regulate ADAS cell differentiation and tissue growth. Overall, ADAS cells show significant promise for the development of functional tissue replacements for various tissues of the musculoskeletal system.
引用
收藏
页码:389 / 399
页数:11
相关论文
共 77 条
[1]  
Adachi N, 2002, J RHEUMATOL, V29, P1920
[2]   Does arthroscopic abrasion arthroplasty promote cartilage regeneration in osteoarthritic knees with eburnation? A prospective study of high tibial osteotomy with abrasion arthroplasty versus high tibial osteotomy alone [J].
Akizuki, S ;
Yasukawa, Y ;
Takizawa, T .
ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 1997, 13 (01) :9-17
[3]   Engineering growing tissues [J].
Alsberg, E ;
Anderson, KW ;
Albeiruti, A ;
Rowley, JA ;
Mooney, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12025-12030
[4]   Effects of transforming growth factor β1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells [J].
Awad, HA ;
Halvorsen, YDC ;
Gimble, JM ;
Guilak, F .
TISSUE ENGINEERING, 2003, 9 (06) :1301-1312
[5]   Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].
Awad, HA ;
Wickham, MQ ;
Leddy, HA ;
Gimble, JM ;
Guilak, F .
BIOMATERIALS, 2004, 25 (16) :3211-3222
[6]  
AWAD HA, 2003, SUMM BIOENG C, P273
[7]   Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components [J].
Barry, F ;
Boynton, RE ;
Liu, BS ;
Murphy, JM .
EXPERIMENTAL CELL RESEARCH, 2001, 268 (02) :189-200
[8]  
Blevins FT, 1998, ORTHOPEDICS, V21, P761
[9]   Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model [J].
Breinan, HA ;
Minas, T ;
Hsu, HP ;
Nehrer, S ;
Sledge, CB ;
Spector, M .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (10) :1439-1451
[10]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895