Efficient regular polygon dissections

被引:0
|
作者
Kranakis, E [1 ]
Krizanc, D
Urrutia, J
机构
[1] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
来源
DISCRETE AND COMPUTATIONAL GEOMETRY | 2000年 / 1763卷
关键词
dissections; glass-cuts; polygonal cuts; regular polygons; squares;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the minimum number g(m, n) (respectively, p(m, n)) of pieces needed to dissect a regular m-gon into a regular n-gon of the same area using glass-cuts (respectively, polygonal cuts). First we study regular polygon-square dissections and show that [n/2] - 2 less than or equal to g(4, n) less than or equal to n/2 + o(n) and [n/4] less than or equal to g(n, 4) less than or equal to n/2 + o(n) hold for sufficiently large n. We also consider polygonal cuts, i.e., the minimum number p(4, n) of pieces needed to dissect a square into a regular n-gon of the same area using polygonal cuts and show that [n/4] less than or equal to p(4, n) less than or equal to (n)(2)+o(n), holds for sufficiently large n. We also consider regular polygon-polygon dissections and obtain similar bounds for g(m, n) and p(m, n).
引用
收藏
页码:172 / 187
页数:16
相关论文
共 50 条
  • [1] Efficient Regular Polygon Dissections
    Evangelos Kranakis
    Danny Krizanc
    Jorge Urrutia
    Geometriae Dedicata, 2000, 80 : 247 - 262
  • [2] Efficient regular polygon dissections
    Kranakis, E
    Krizanc, D
    Urrutia, J
    GEOMETRIAE DEDICATA, 2000, 80 (1-3) : 247 - 262
  • [3] Counting symmetry classes of dissections of a convex regular polygon
    Bowman, Douglas
    Regev, Alon
    ADVANCES IN APPLIED MATHEMATICS, 2014, 56 : 35 - 55
  • [4] Interval Posets and Polygon Dissections
    Bagno, Eli
    Eisenberg, Estrella
    Reches, Shulamit
    Sigron, Moriah
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (403):
  • [5] Counting Quiddities of Polygon Dissections
    Charles H. Conley
    Valentin Ovsienko
    The Mathematical Intelligencer, 2023, 45 : 256 - 262
  • [6] Counting Quiddities of Polygon Dissections
    Conley, Charles H.
    Ovsienko, Valentin
    MATHEMATICAL INTELLIGENCER, 2023, 45 (03): : 256 - 262
  • [7] Legendre polynomials and polygon dissections?
    Beckwith, D
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (03): : 256 - 257
  • [8] Legendre Polynomials and Polygon Dissections?
    Beckwith, D.
    American Mathematical Monthly, 105 (03):
  • [9] Counting polygon dissections in the projective plane
    Noy, Marc
    Rue, Juanjo
    ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (04) : 599 - 619
  • [10] Closed forms for the number of polygon dissections
    Lisonek, P
    JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (5-6) : 595 - 601