Zero-divisor graphs of unitary R-modules over commutative rings

被引:0
作者
Aijaz, M. [1 ]
Pirzada, S. [2 ]
Somasundaram, A. [3 ]
机构
[1] Lovely Profess Univ, Dept Comp Sci Engn, Phagwara, Punjab, India
[2] Univ Kashmir, Dept Math, Srinagar, India
[3] Birla Inst Technol & Sci, Dept Gen Sci, Pilani, Rajasthan, India
关键词
Module; ring; zero divisor graph of module; complete graph; diameter; clique;
D O I
10.1080/09728600.2022.2058895
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring with unity 1 not equal 0 and let M be a unitary R-module. In this paper, we derive some completeness conditions on the zero divisor graphs of modules over commutative rings. It is shown that the weak zero divisor graph of a simple R-module is complete if and only if R is a field. We investigate the zero divisor graphs in finitely generated R-modules. We find the diameter, the girth, the clique number and the vertex degrees of the zero-divisor graphs of the rings of integer modulo n as Z-modules.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 11 条