A 0.5-V power-efficient low-noise CMOS instrumentation amplifier for wireless biosensor

被引:20
作者
Bai, Wenbin [1 ]
Zhu, Zhangming [1 ]
机构
[1] Xidian Univ, Sch Microelect, Xian 710071, Peoples R China
来源
MICROELECTRONICS JOURNAL | 2016年 / 51卷
基金
中国国家自然科学基金;
关键词
Biosensor front-end; CCIA; Low noise; Low power; DC-servo loop; Subthreshold; RECORDING FRONT-END; MU-W;
D O I
10.1016/j.mejo.2016.02.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a low-power, low-noise CMOS instrumentation amplifier intended for use in wireless bio-potential monitoring system. It employs a capacitively-coupled topology to achieve high power efficiency. In order to depress the noise, chopper-stabilized technique is used and a transconductance-boost technique is introduced in low-noise amplifier (LNA). All MOS transistors implemented in LNA are biased in subthreshold region with a supply voltage of 0.5 V to reduce the power consumption. Moreover, a DC-servo loop (DSL) is implemented to realize a high-pass corner for electrode offset cancellation. Implemented in a 0.18 mu m CMOS process, the front-end circuit occupies 0.48 mm(2) and draws 1.5 mu A. The capacitively-coupled chopper-stabilized instrumentation amplifier (CCIA) draws 800 nA and its input-referred noise is 3.5 mu V-rms integrated from 0.5 to 1 kHz, which results in a NEF of 3.8 and a PEF of 7.2 respectively. The whole circuit achieves 98 dB CMRR and 73 dB PSRR. The total input-referred noise of the front-end instrumentation amplifier including the DSL is 4.3 mu V-rms integrated from 0.5 to 1 kHz. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 23 条
[1]  
Aattanapanitch Woradorn, 2007, IEEE T BIOMED CIRC S, V1, P136
[2]   A power efficient gain enhancing technique for current mirror operational transconductance amplifiers [J].
Ali, Shafqat .
MICROELECTRONICS JOURNAL, 2015, 46 (02) :183-190
[3]  
[Anonymous], 2014, VLSI DES AUT TEST VL
[4]   Wireless sensor networks: Enabling technology for ambient intelligence [J].
Benini, L. ;
Farella, E. ;
Guiducci, C. .
MICROELECTRONICS JOURNAL, 2006, 37 (12) :1639-1649
[5]   A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials [J].
Denison, Tim ;
Consoer, Kelly ;
Santa, Wesley ;
Avestruz, Al-Thaddeus ;
Cooley, John ;
Kelly, Andy .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (12) :2934-2945
[6]   A 1.8 μW 60 nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes [J].
Fan, Qinwen ;
Sebastiano, Fabio ;
Huijsing, Johan H. ;
Makinwa, Kofi A. A. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (07) :1534-1543
[7]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[8]   A low-power low-noise CMOS amplifier for neural recording applications [J].
Harrison, RR ;
Charles, C .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (06) :958-965
[9]   Low-power low-noise analog signal conditioning chip with on-chip drivers for healthcare applications [J].
Joshi, Sanjay ;
Thaker, Viral ;
Amaravati, Anvesha ;
Shojaei-Baghini, Maryam .
MICROELECTRONICS JOURNAL, 2012, 43 (11) :828-837
[10]   An ECG Recording Front-End With Continuous-Time Level-Crossing Sampling [J].
Li, Yongjia ;
Mansano, Andre L. ;
Yuan, Yuan ;
Zhao, Duan ;
Serdijn, Wouter A. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2014, 8 (05) :626-635