Stability in a class of variational methods

被引:8
作者
Haddad, A. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
function of bounded variation; textures; G norm; oscillating patterns; Rudin-Osher-Fatemi model; stability;
D O I
10.1016/j.acha.2006.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to investigate the stability property of some models which are currently used in image processing. Following L. Rudin, S.J. Osher and E. Fatemi, we decompose an image f is an element of L-2(R-2) as a sum u + v where u belongs to BV(R-2) and v belongs to L-2(R-2). The Banach space BV is aimed at modeling the objects contained in the given image. the optimal decomposition minimizes the energy J(u) = parallel to u parallel to BV + lambda parallel to f - u parallel to(2)(2). We denote Phi(f) = (u) over bar this optimal solution. After recalling decomposition minimizes the energy J(u) = parallel to u parallel to(BV) + lambda parallel to f - u parallel to(2)(2). some properties of that optimal decomposition, we prove the stability of the mapping (P. Moreover, we generalize the stability result to other models where the Banach space BV is replaced by other functional Banach spaces E. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 73
页数:17
相关论文
共 54 条
  • [1] Blind source separation - Semiparametric statistical approach
    Amari, S
    Cardoso, JF
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) : 2692 - 2700
  • [2] AMBROSIO L, 1997, SCUOLA NORMALE SUPER
  • [3] Ambrosio L., 2001, J. Eur. Math. Soc., V3, P39
  • [4] Andreu F, 2001, DIFFERENTIAL INTEGRA, V14, P321
  • [5] [Anonymous], 1982, VISION COMPUTATIONAL
  • [6] AUBERT G, 2003, 4878 INRIA
  • [7] Aubin J.P., 1979, APPL FUNCTIONAL ANAL
  • [8] Image decomposition into a bounded variation component and an oscillating component
    Aujol, JF
    Aubert, G
    Blanc-Féraud, L
    Chambolle, A
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2005, 22 (01) : 71 - 88
  • [9] AUJOL JF, 2004, THESIS U NICE SOPHIA
  • [10] BRAIDES A, 1991, LECT NOTES MATH, V1694