Impulsive Delayed Lasota-Wazewska Fractional Models: Global Stability of Integral Manifolds

被引:5
作者
Stamov, Gani [1 ,2 ]
Stamova, Ivanka [2 ]
机构
[1] Tech Univ Sofia, Dept Math, Sliven 8800, Bulgaria
[2] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
关键词
global stability; integral manifolds; impulsive Lasota-Wazewska models; functional derivatives; variable impulsive perturbations; time-varying delays; FUNCTIONAL-DIFFERENTIAL EQUATIONS; POSITIVE PERIODIC-SOLUTION; TIME-VARYING DELAYS; NEURAL-NETWORKS; EXISTENCE; ORDER; BOUNDEDNESS; ATTRACTIVITY; SYSTEMS; UNIQUENESS;
D O I
10.3390/math7111025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with the problems of existence, boundedness and global stability of integral manifolds for impulsive Lasota-Wazewska equations of fractional order with time-varying delays and variable impulsive perturbations. The main results are obtained by employing the fractional Lyapunov method and comparison principle for impulsive fractional differential equations. With this research we generalize and improve some existing results on fractional-order models of cell production systems. These models and applied technique can be used in the investigation of integral manifolds in a wide range of biological and chemical processes.
引用
收藏
页数:15
相关论文
共 57 条
  • [11] New results for a Lasota-Wazewska model
    Cherif, Farouk
    Miraoui, Mohsen
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2019, 12 (02)
  • [12] A mathematical model on fractional Lotka-Volterra equations
    Das, S.
    Gupta, P. K.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2011, 277 (01) : 1 - 6
  • [13] GLOBAL EXPONENTIAL STABILITY OF PERIODIC SOLUTIONS TO A DELAY LASOTA-WAZEWSKA MODEL WITH DISCONTINUOUS HARVESTING
    Duan, Lian
    Huang, Lihong
    Chen, Yuming
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) : 561 - 573
  • [14] On the fractional-order logistic equation
    El-Sayed, A. M. A.
    El-Mesiry, A. E. M.
    El-Saka, H. A. A.
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 817 - 823
  • [15] GRAEF JR, 2009, DYNAM CONT DIS SER A, V16, P27
  • [16] Johnston L., 1999, NONHODGKINS LYMPHOMA
  • [17] Kilbas AA., 2006, Theory and Applications of Fractional Differential Equations, DOI 10.1016/S0304-0208(06)80001-0
  • [18] Nonlinear Impulsive Differential Equations with Weighted Exponential or Ordinary Dichotomous Linear Part in a Banach Space
    Kiskinov, Hristo
    Zahariev, Andrey
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 2015
  • [19] Kiskinov H, 2014, CR ACAD BULG SCI, V67, P745
  • [20] GLOBAL ATTRACTIVITY IN POPULATION-DYNAMICS
    KULENOVIC, MRS
    LADAS, G
    SFICAS, YG
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 18 (10-11) : 925 - 928