Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

被引:11
作者
Chandran, Maneesh [1 ]
Shasha, Michal [1 ]
Michaelson, Shaul [1 ]
Hoffman, Alon [1 ]
机构
[1] Technion Israel Inst Technol, Schulich Fac Chem, IL-32000 Haifa, Israel
关键词
Graphite; Nitrogen plasma; N-2(+) implantation; Thermal stability; ORIENTED PYROLYTIC-GRAPHITE; DOPED GRAPHENE; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; VAPOR-DEPOSITION; RECENT PROGRESS; CARBON; PERFORMANCE; DIAMOND; IMPLANTATION;
D O I
10.1016/j.apsusc.2016.04.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 key) N-2(+) implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N-2(+) implanted HOPG surface (7.7 at.%). The evolution of N is components (N-1, N-2, N-3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N-2(+) implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 degrees C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 201
页数:10
相关论文
共 51 条
[1]   Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor [J].
Algara-Siller, Gerardo ;
Severin, Nikolai ;
Chong, Samantha Y. ;
Bjorkman, Torbjorn ;
Palgrave, Robert G. ;
Laybourn, Andrea ;
Antonietti, Markus ;
Khimyak, Yaroslav Z. ;
Krasheninnikov, Arkady V. ;
Rabe, Juergen P. ;
Kaiser, Ute ;
Cooper, Andrew I. ;
Thomas, Arne ;
Bojdys, Michael J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (29) :7450-7455
[2]  
Baker MA, 1997, SURF INTERFACE ANAL, V25, P629, DOI 10.1002/(SICI)1096-9918(199708)25:9<629::AID-SIA313>3.0.CO
[3]  
2-5
[4]   Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy [J].
Bertoti, Imre ;
Mohai, Miklos ;
Laszlo, Krisztina .
CARBON, 2015, 84 :185-196
[5]   Surface modification of multi-wall carbon nanotubes by nitrogen attachment [J].
Bertoti, Imre ;
Mohai, Ilona ;
Mohai, Miklos ;
Szepvoelgyi, Janos .
DIAMOND AND RELATED MATERIALS, 2011, 20 (07) :965-968
[6]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[7]   Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies [J].
Chandran, Maneesh ;
Shasha, Michal ;
Michaelson, Shaul ;
Hoffman, Alon .
APPLIED PHYSICS LETTERS, 2015, 107 (11)
[8]   X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films [J].
Dementjev, AP ;
de Graaf, A ;
van de Sanden, MCM ;
Maslakov, KI ;
Naumkin, AV ;
Serov, AA .
DIAMOND AND RELATED MATERIALS, 2000, 9 (11) :1904-1907
[9]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[10]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425