Fast screening of polycyclic aromatic hydrocarbons using trapped ion mobility spectrometry - mass spectrometry

被引:0
作者
Castellanos, A. [1 ]
Benigni, P. [1 ]
Hernandez, D. R. [1 ]
DeBord, J. D. [1 ]
Ridgeway, M. E. [2 ]
Park, M. A. [2 ]
Fernandez-Lima, F. [1 ]
机构
[1] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA
[2] Bruker Daltonics Inc, Billerica, MA 01821 USA
关键词
GAS-CHROMATOGRAPHY; METABOLITES; PAH; IDENTIFICATION; PHENANTHRENE; IONIZATION; EXPOSURE; CHARGES; URINE;
D O I
10.1039/c4ay01655f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the present paper, we showed the advantages of trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) combined with theoretical calculations for fast identification (millisecond timescale) of polycyclic aromatic hydrocarbons (PAH) compounds from complex mixtures. Accurate PAH collision cross sections (CCS, in nitrogen as a bath gas) are reported for the most commonly encountered PAH compounds and the ability to separate PAH geometric isomers is shown for three isobaric pairs with mobility resolution exceeding 150 (3-5 times higher than conventional IMS devices). Theoretical candidate structures (optimized at the DFT/B3LYP level) are proposed for the most commonly encountered PAH compounds showing good agreement with the experimental CCS values (<5%). The potential of TIMS-MS for the separation and identification of PAH compounds from complex mixtures without the need of lengthy pre-separation steps is illustrated for the case of a complex soil mixture.
引用
收藏
页码:9328 / 9332
页数:5
相关论文
共 30 条
[1]   Elucidating Molecular Structures of Nonalkylated and Short-Chain Alkyl (n &lt; 5, (CH2)n) Aromatic Compounds in Crude Oils by a Combination of Ion Mobility and Ultrahigh-Resolution Mass Spectrometries and Theoretical Collisional Cross-Section Calculations [J].
Ahmed, Arif ;
Cho, Yunju ;
Giles, Kevin ;
Riches, Eleanor ;
Lee, Jong Wha ;
Kim, Hugh I. ;
Choi, Cheol Ho ;
Kim, Sunghwan .
ANALYTICAL CHEMISTRY, 2014, 86 (07) :3300-3307
[2]   Application of the Mason-Schamp Equation and Ion Mobility Mass Spectrometry To Identify Structurally Related Compounds in Crude Oil [J].
Ahmed, Arif ;
Cho, Yun Ju ;
No, Myoung-han ;
Koh, Jaesuk ;
Tomczyk, Nicholas ;
Giles, Kevin ;
Yoo, Jong Shin ;
Kim, Sunghwan .
ANALYTICAL CHEMISTRY, 2011, 83 (01) :77-83
[3]   Analysis of hydroxylated polycyclic aromatic hydrocarbons in urine using comprehensive two-dimensional gas chromatography with a flame ionization detector [J].
Andre Amorim, Leiliane Coelho ;
Dimandja, Jean-Marie ;
Cardeal, Zenilda de Lourdes .
JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (14) :2900-2904
[4]   Biological monitoring and biochemical effect monitoring of exposure to polycyclic aromatic hydrocarbons [J].
Angerer, J ;
Mannschreck, C ;
Gundel, J .
INTERNATIONAL ARCHIVES OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH, 1997, 70 (06) :365-377
[5]   ATOMIC CHARGES DERIVED FROM SEMIEMPIRICAL METHODS [J].
BESLER, BH ;
MERZ, KM ;
KOLLMAN, PA .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (04) :431-439
[6]   Structural Characterization of Drug-like Compounds by Ion Mobility Mass Spectrometry: Comparison of Theoretical and Experimentally Derived Nitrogen Collision Cross Sections [J].
Campuzano, Iain ;
Bush, Matthew F. ;
Robinson, Carol V. ;
Beaumont, Claire ;
Richardson, Keith ;
Kim, Hyungjun ;
Kim, Hugh I. .
ANALYTICAL CHEMISTRY, 2012, 84 (02) :1026-1033
[7]   Note: Integration of trapped ion mobility spectrometry with mass spectrometry [J].
Fernandez-Lima, F. A. ;
Kaplan, D. A. ;
Park, M. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (12)
[8]   Gas-phase separation using a trapped ion mobility spectrometer [J].
Fernandez-Lima, Francisco ;
Kaplan, Desmond A. ;
Suetering, J. ;
Park, Melvin A. .
INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY, 2011, 14 (2-3) :93-98
[9]   Petroleum Crude Oil Characterization by IMS-MS and FTICR MS [J].
Fernandez-Lima, Francisco A. ;
Becker, Christopher ;
McKenna, Amy M. ;
Rodgers, Ryan P. ;
Marshall, Alan G. ;
Russell, David H. .
ANALYTICAL CHEMISTRY, 2009, 81 (24) :9941-9947
[10]  
Flanagan L. A., 1999, U.S. Patent, Patent No. 5872357