Kneser graphs are Hamiltonian for n ≥ 3k

被引:32
作者
Chen, YC [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Hamiltonian cycles; uniform subset graphs; antipodal layers problem; Kneser graphs; Gray codes; Erdos revolving door problem;
D O I
10.1006/jctb.2000.1969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kneser graph K(n, k) has as vertices the k-subsets of {1, 2,..., n}. Two vertices are adjacent if the k-subsets are disjoint. In this paper, we prove that K(n, k) is Hamiltonian for it n greater than or equal to 3k, and extend this to the bipartite Kneser graphs. (C) 2000 Academic Press.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 17 条
[1]  
Baranyai Zs., 1975, C MATH SOC JANOS BOL, V10, P91
[2]   HAMILTONIAN UNIFORM SUBSET GRAPHS [J].
CHEN, BL ;
LIH, KW .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (03) :257-263
[3]  
CHEN Y, 2000, THESIS U ILLINOIS UR
[4]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[5]   Binomial and Q-binomial coefficient inequalities related to the Hamiltonicity of the Kneser graphs and their Q-analogues [J].
Clark, WE ;
Ismail, MEH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (01) :83-98
[6]   2 HAMILTON CYCLES IN BIPARTITE REFLECTIVE KNESER GRAPHS [J].
DEJTER, IJ ;
CORDOVA, J ;
QUINTANA, JA .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :63-70
[7]  
DEJTER IJ, 1985, GRAPH THEORY APPL AL, P189
[8]  
HAVEL I, 1982, GRAPHS OTHER COMBINA, P101
[9]  
HEINRICH K, 1978, J AUSTR MATH SOC A, V26, P89
[10]   THE ANTIPODAL LAYERS PROBLEM [J].
HURLBERT, G .
DISCRETE MATHEMATICS, 1994, 128 (1-3) :237-245