On-line AdaTron learning of unlearnable rules

被引:12
作者
Inoue, J
Nishimori, H
机构
[1] Department of Physics, Tokyo Institute of Technology, Tokyo, 152, Oh-okayama, Meguro-ku
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 04期
关键词
D O I
10.1103/PhysRevE.55.4544
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the on-line AdaTron learning of linearly nonseparable rules by a simple perceptron. Training examples are provided by a perceptron viith a nonmonotonic transfer function that reduces to the usual monotonic relation in a certain limit. We find that, although the on-line AdaTron learning is a powerful algorithm for the learnable rule, it does not give the best possible generalization error for unlearnable problems. Optimization of the learning rate is shown to greatly improve the performance of the AdaTron algorithm. leading to the best possible generalization error for a wide range of the parameter that controls the shape of the transfer function.
引用
收藏
页码:4544 / 4551
页数:8
相关论文
共 16 条
[1]   THE ADATRON - AN ADAPTIVE PERCEPTRON ALGORITHM [J].
ANLAUF, JK ;
BIEHL, M .
EUROPHYSICS LETTERS, 1989, 10 (07) :687-692
[2]   ONLINE LEARNING WITH A PERCEPTRON [J].
BIEHL, M ;
RIEGLER, P .
EUROPHYSICS LETTERS, 1994, 28 (07) :525-530
[3]   SYMMETRY-BREAKING IN NONMONOTONIC NEURAL NETWORKS [J].
BOFFETTA, G ;
MONASSON, R ;
ZECCHINA, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (12) :L507-L513
[4]  
Hertz J., 1991, Introduction to the Theory of Neural Computation
[5]   Retrieval phase diagrams of non-monotonic Hopfield networks [J].
Inoue, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (16) :4815-4826
[6]  
INOUE J, UNPUB
[7]   LEARNING A DECISION BOUNDARY FROM STOCHASTIC EXAMPLES - INCREMENTAL ALGORITHMS WITH AND WITHOUT QUERIES [J].
KABASHIMA, Y ;
SHINOMOTO, S .
NEURAL COMPUTATION, 1995, 7 (01) :158-172
[8]   LOWER BOUNDS ON GENERALIZATION ERRORS FOR DRIFTING RULES [J].
KINOUCHI, O ;
CATICHA, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22) :6161-6171
[9]   DOMAINS OF SOLUTIONS AND REPLICA SYMMETRY-BREAKING IN MULTILAYER NEURAL NETWORKS [J].
MONASSON, R ;
OKANE, D .
EUROPHYSICS LETTERS, 1994, 27 (02) :85-90
[10]  
MORITA M, 1990, T IECE D, V73, P242