Dynamical scaling and the finite-capacity anomaly in three-wave turbulence

被引:21
作者
Connaughton, Colm [1 ,2 ]
Newell, Alan C. [3 ]
机构
[1] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 03期
关键词
SPECTRA; WAVES;
D O I
10.1103/PhysRevE.81.036303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a systematic study of the dynamical scaling process leading to the establishment of the Kolmogorov-Zakharov (KZ) spectrum in weak three-wave turbulence. In the finite-capacity case, in which the transient spectrum reaches infinite frequency in finite time, the dynamical scaling exponent is anomalous in the sense that it cannot be determined from dimensional considerations. As a consequence, the transient spectrum preceding the establishment of the steady state is steeper than the KZ spectrum. Constant energy flux is actually established from right to left in frequency space after the singularity of the transient solution. From arguments based on entropy production, a steeper transient spectrum is heuristically plausible.
引用
收藏
页数:6
相关论文
共 24 条
[11]   Dimensional analysis and weak turbulence [J].
Connaughton, C ;
Nazarenko, S ;
Newell, AC .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) :86-97
[12]  
CONNAUGHTON C, 2009, ARXIV09095399
[13]   Numerical solutions of the isotropic 3-wave kinetic equation [J].
Connaughton, Colm .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (23-24) :2282-2297
[14]   Nontrivial polydispersity exponents in aggregation models [J].
Cueille, S ;
Sire, C .
PHYSICAL REVIEW E, 1997, 55 (05) :5465-5478
[15]   Weak inertial-wave turbulence theory [J].
Galtier, S .
PHYSICAL REVIEW E, 2003, 68 (01) :4
[16]   A weak turbulence theory for incompressible magnetohydrodynamics [J].
Galtier, S ;
Nazarenko, SV ;
Newell, AC ;
Pouquet, A .
JOURNAL OF PLASMA PHYSICS, 2000, 63 :447-488
[17]   Dynamical formation of a Bose-Einstein condensate [J].
Lacaze, R ;
Lallemand, P ;
Pomeau, Y ;
Rica, S .
PHYSICA D, 2001, 152 :779-786
[18]   A survey of numerical solutions to the coagulation equation [J].
Lee, MH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47) :10219-10241
[19]   Scaling theory and exactly solved models in the kinetics of irreversible aggregation [J].
Leyvraz, F .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 383 (2-3) :95-212
[20]   Statistical description of acoustic turbulence [J].
Lvov, VS ;
Lvov, Y ;
Newell, AC ;
Zakharov, V .
PHYSICAL REVIEW E, 1997, 56 (01) :390-405