Dynamical scaling and the finite-capacity anomaly in three-wave turbulence

被引:21
作者
Connaughton, Colm [1 ,2 ]
Newell, Alan C. [3 ]
机构
[1] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 03期
关键词
SPECTRA; WAVES;
D O I
10.1103/PhysRevE.81.036303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a systematic study of the dynamical scaling process leading to the establishment of the Kolmogorov-Zakharov (KZ) spectrum in weak three-wave turbulence. In the finite-capacity case, in which the transient spectrum reaches infinite frequency in finite time, the dynamical scaling exponent is anomalous in the sense that it cannot be determined from dimensional considerations. As a consequence, the transient spectrum preceding the establishment of the steady state is steeper than the KZ spectrum. Constant energy flux is actually established from right to left in frequency space after the singularity of the transient solution. From arguments based on entropy production, a steeper transient spectrum is heuristically plausible.
引用
收藏
页数:6
相关论文
共 24 条
[1]   "Fast" Nonlinear Evolution in Wave Turbulence [J].
Annenkov, S. Y. ;
Shrira, V. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[2]  
[Anonymous], 1992, Wave Turbulence, DOI DOI 10.1007/978-3-642-50052-7
[3]  
[Anonymous], 1991, J NONLINEAR SCI
[4]   Self-similarity of wind-driven seas [J].
Badulin, SI ;
Pushkarev, AN ;
Resio, D ;
Zakharov, VE .
NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (06) :891-945
[5]  
Barenblatt G.I., 1996, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics No. 14, V14
[6]   A measure of data collapse for scaling [J].
Bhattacharjee, SM ;
Seno, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (33) :6375-6380
[7]  
Connaughton C, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.061114
[8]   Warm cascades and anomalous scaling in a diffusion model of turbulence [J].
Connaughton, C ;
Nazarenko, S .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4-445014
[9]   Kinetic theory and Bose-Einstein condensation [J].
Connaughton, C ;
Pomeau, Y .
COMPTES RENDUS PHYSIQUE, 2004, 5 (01) :91-106
[10]   Non-stationary spectra of local wave turbulence [J].
Connaughton, C ;
Newell, AC ;
Pomeau, Y .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) :64-85