Accelerating two-dimensional X-ray diffraction measurement and analysis with density-based clustering for thin films

被引:2
作者
Yamashita, Akihiro [1 ,2 ]
Nagata, Takahiro [3 ]
Yagyu, Shinjiro [3 ]
Asahi, Toru [1 ]
Chikyow, Toyohiro [2 ]
机构
[1] Waseda Univ, Dept Adv Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
[2] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Mat Sci, Res Ctr Funct Mat RCFM, Tsukuba, Ibaraki 3050044, Japan
关键词
COMBINATORIAL; DISCOVERY; FABRICATION;
D O I
10.35848/1347-4065/abf2d8
中图分类号
O59 [应用物理学];
学科分类号
摘要
Research using X-ray diffraction (XRD) remains to be accelerated in spite of its importance in materials science. Automated noise separation or optimization of measurement time in XRD is beneficial for discovering materials. This study analyzes two-dimensional XRD (2D-XRD) with density-based clustering to accelerate XRD. This clustering technique can separate diffraction pattern signals from noises, even with low signal-to-noise ratio (S/N) 2D-XRD. Moreover, we found that the crystalline degree information in composition spreads is captured based on density. This information requires a long time to be captured with conventional one-dimensional detectors or scintillation counters. Therefore, these findings lead to dramatic reduction and optimization of measurement time to improve S/N. The proposed procedure is applicable with 2D detector measurements.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
Ahmet P, 2004, APPL PHYS A-MATER, V79, P837, DOI [10.1007/s0039-004-2627-9, 10.1007/s00339-004-2627-9]
[2]   Development of an Automatic, High-Throughput Structural Refinement Method Using Rietveld Analysis [J].
Aimi, Akihisa ;
Fujimoto, Kenjiro .
ACS COMBINATORIAL SCIENCE, 2020, 22 (01) :35-41
[3]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[4]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[5]  
Bodenstein C, 2016, 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), P746, DOI [10.1109/ICMLA.2016.0133, 10.1109/ICMLA.2016.49]
[6]  
Chikyow T., MNC2020 33 INT MICR
[7]   High-throughput solid solution strengthening characterization in high entropy alloys [J].
Coury, Francisco Gil ;
Wilson, Paul ;
Clarke, Kester D. ;
Kaufman, Michael J. ;
Clarke, Amy J. .
ACTA MATERIALIA, 2019, 167 :1-11
[8]   New frontiers for the materials genome initiative [J].
de Pablo, Juan J. ;
Jackson, Nicholas E. ;
Webb, Michael A. ;
Chen, Long-Qing ;
Moore, Joel E. ;
Morgan, Dane ;
Jacobs, Ryan ;
Pollock, Tresa ;
Schlom, Darrell G. ;
Toberer, Eric S. ;
Analytis, James ;
Dabo, Ismaila ;
DeLongchamp, Dean M. ;
Fiete, Gregory A. ;
Grason, Gregory M. ;
Hautier, Geoffroy ;
Mo, Yifei ;
Rajan, Krishna ;
Reed, Evan J. ;
Rodriguez, Efrain ;
Stevanovic, Vladan ;
Suntivich, Jin ;
Thornton, Katsuyo ;
Zhao, Ji-Cheng .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[9]  
Ester M., 1996, P 2 INT C KNOWL DISC, P226, DOI DOI 10.5555/3001460.3001507
[10]   Apparatus for deposition of composition spread alloy films: The rotatable shadow mask [J].
Fleutot, Benoit ;
Miller, James B. ;
Gellman, Andrew J. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (06)