RELATIVE COMPLEXITY OF RANDOM WALKS IN RANDOM SCENERY IN THE ABSENCE OF A WEAK INVARIANCE PRINCIPLE FOR THE LOCAL TIMES

被引:1
|
作者
Deligiannidis, George [1 ]
Kosloff, Zemer [2 ]
机构
[1] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
[2] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 04期
关键词
Random walk in random scenery; relative complexity; entropy; Folner sequence; MEASURE-PRESERVING TRANSFORMATIONS; 2-DIMENSIONAL RANDOM-WALKS; LOOSELY BERNOULLI; LIMIT-THEOREM; ENTROPY; GENERATORS;
D O I
10.1214/16-AOP1118
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We answer a question of Aaronson about the relative complexity of Random Walks in Random Sceneries driven by either aperiodic two-dimensional random walks, two-dimensional Simple Random walk, or by aperiodic random walks in the domain of attraction of the Cauchy distribution. A key step is proving that the range of the random walk satisfies the Folner property almost surely.
引用
收藏
页码:2505 / 2532
页数:28
相关论文
共 50 条