Increasing hippocampal neurogenesis: A novel mechanism for antidepressant drugs

被引:133
作者
Malberg, JE [1 ]
Schechter, LE [1 ]
机构
[1] Wyeth Ayerst Res, Neurosci Discovery Res, Princeton, NJ 08543 USA
关键词
neurogenesis; depression; proliferation; hippocampus; serotonin;
D O I
10.2174/1381612053382223
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The birth of new neurons, or neurogenesis, in the hippocampal formation has been demonstrated throughout the lifetime of multiple species including humans. A major finding in the field of depression is that treatment with antidepressant drugs increases hippocampal neurogenesis. This review presents a current summary of this field of study and presents the hypothesis that increasing adult hippocampal neurogenesis may be a new drug target or mechanism for future antidepressant drugs. It has been demonstrated that multiple classes of antidepressant drugs increase hippocampal cell proliferation and neurogenesis in a chronic and not acute time course, which corresponds to the therapeutic time course necessary for effects. Conversely, animal models of depression or stress paradigms decrease cell proliferation. Clinically, there is evidence of reduced hippocampal volume in patients with major depressive disorder or other affective disorders. Taken together, this data indicates that reduced hippocampal cell number may be involved in the pathophysiology of depression and reversal of this may be one way the antidepressant drugs exert their effects. We hypothesize that the next generation of antidepressant drugs will, in addition to their effects on known transmitter or second messenger systems, involve either direct or indirect targeting of neurogenic factors. In addition, the ability of novel compounds to be tested for the neurogenic potential may become an additional way to evaluate a compound for putative antidepressant effects.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 104 条
[1]   IGF-I has a direct proliferative effect in adult hippocampal progenitor cells [J].
Åberg, MAI ;
Åberg, ND ;
Palmer, TD ;
Alborn, AM ;
Carlsson-Skwirut, C ;
Bang, P ;
Rosengren, LE ;
Olsson, T ;
Gage, FH ;
Eriksson, PS .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 24 (01) :23-40
[2]  
Åberg MAI, 2000, J NEUROSCI, V20, P2896
[3]   AUTORADIOGRAPHIC AND HISTOLOGICAL EVIDENCE OF POSTNATAL HIPPOCAMPAL NEUROGENESIS IN RATS [J].
ALTMAN, J ;
DAS, GD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1965, 124 (03) :319-&
[4]  
Anderson MF, 2002, DEV BRAIN RES, V134, P115
[5]   Insulin-like growth factor-I and central nervous system development [J].
Anlar, B ;
Sullivan, KA ;
Feldman, EL .
HORMONE AND METABOLIC RESEARCH, 1999, 31 (2-3) :120-125
[6]   Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus [J].
Bai, F ;
Bergeron, M ;
Nelson, DL .
NEUROPHARMACOLOGY, 2003, 44 (08) :1013-1021
[7]  
Ballas Christos, 2002, Psychopharmacol Bull, V36, P39
[8]   A mechanism converting psychosocial stress into mononuclear cell activation [J].
Bierhaus, A ;
Wolf, J ;
Andrassy, M ;
Rohleder, N ;
Humpert, PM ;
Petrov, D ;
Ferstl, R ;
von Eynatten, M ;
Wendt, T ;
Rudofsky, G ;
Joswig, M ;
Morcos, M ;
Schwaninger, M ;
McEwen, B ;
Kirschbaum, C ;
Nawroth, PP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :1920-1925
[9]   Technetium labeled small peptide radiopharmaceuticals in the identification of lung cancer [J].
Blum, J ;
Handmaker, H ;
Rinne, NA .
CURRENT PHARMACEUTICAL DESIGN, 2002, 8 (20) :1827-1836
[10]   Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats [J].
Brezun, JM ;
Daszuta, A .
NEUROSCIENCE, 1999, 89 (04) :999-1002