Joint Sparse Principal Component Analysis Based Roust Sparse Fault Detection

被引:0
|
作者
Jiang, Wenlan [1 ]
Zhang, Tao [1 ]
Wang, Huangang [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20) | 2020年
关键词
Fault detection; feature selection; Joint Sparse PCA([!text type='JS']JS[!/text]PCA); Tennessee Eastman process(TEP);
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel variant of PCA, joint sparse principal component analysis(JSPCA), is adopted into robust sparse fault detection. By imposing l(2,1) norm jointly on the loss function and the regularization term of traditional sparse PCA, the JSPCA based fault detection method achieves sparse feature selection and robust fault detection simultaneously without high computation cost. The effectiveness of the proposed method is evaluated on the Tennessee Eastman process.
引用
收藏
页码:1234 / 1239
页数:6
相关论文
共 50 条
  • [1] Structured Joint Sparse Principal Component Analysis for Fault Detection and Isolation
    Liu, Yi
    Zeng, Jiusun
    Xie, Lei
    Luo, Shihua
    Su, Hongye
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 777 - 782
  • [2] Structured Joint Sparse Principal Component Analysis for Fault Detection and Isolation
    Liu, Yi
    Zeng, Jiusun
    Xie, Lei
    Luo, Shihua
    Su, Hongye
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) : 2721 - 2731
  • [3] Joint sparse principal component analysis
    Yi, Shuangyan
    Lai, Zhihui
    He, Zhenyu
    Cheung, Yiu-ming
    Liu, Yang
    PATTERN RECOGNITION, 2017, 61 : 524 - 536
  • [4] Use of Sparse Principal Component Analysis (SPCA) for Fault Detection
    Gajjar, Shriram
    Kulahci, Murat
    Palazoglu, Ahmet
    IFAC PAPERSONLINE, 2016, 49 (07): : 693 - 698
  • [5] Sparse Robust Principal Component Analysis with Applications to Fault Detection and Diagnosis
    Luo, Lijia
    Bao, Shiyi
    Tong, Chudong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (03) : 1300 - 1309
  • [6] Compressive sparse principal component analysis for process supervisory monitoring and fault detection
    Liu, Yang
    Zhang, Guoshan
    Xu, Bingyin
    JOURNAL OF PROCESS CONTROL, 2017, 50 : 1 - 10
  • [7] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [8] Real-time fault detection and diagnosis using sparse principal component analysis
    Gajjar, Shriram
    Kulahci, Murat
    Palazoglu, Ahmet
    JOURNAL OF PROCESS CONTROL, 2018, 67 : 112 - 128
  • [9] Sparse Principal Component Analysis in Hyperspectral Change Detection
    Nielsen, Allan A.
    Larsen, Rasmus
    Vestergaard, Jacob S.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [10] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188