Bogomolov-Sommese type vanishing for globally F-regular threefolds

被引:3
作者
Kawakami, Tatsuro [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Frobenius split varieties; Globally F-regular varieties; Vanishing theorems; Differential forms; SURFACES; SPACES; CLASSIFICATION; INEQUALITY; EXISTENCE; MORPHISM; THEOREMS; 3-FOLDS; SHEAVES;
D O I
10.1007/s00209-021-02740-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that every invertible subsheaf of the cotangent bundle of a smooth globally F-regular threefold of characteristic p > 3 has Iitaka dimension less than or equal to one.
引用
收藏
页码:1821 / 1835
页数:15
相关论文
共 38 条
[1]  
[Anonymous], 1978, Izv. Akad. Nauk SSSR Ser. Mat.
[2]   Existence of Mori fibre spaces for 3-folds in char p [J].
Birkar, Caucher ;
Waldron, Joe .
ADVANCES IN MATHEMATICS, 2017, 313 :62-101
[3]  
Birkar C, 2016, ANN SCI ECOLE NORM S, V49, P169
[4]   ENRIQUES CLASSIFICATION OF SURFACES IN CHAR-P .3. [J].
BOMBIERI, E ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1976, 35 :197-232
[5]  
Brion M., 2005, Progr. Math, V231, DOI DOI 10.1007/B137486
[6]  
Bruns W., 1993, Cohen-Macaulay Rings
[7]   The Frobenius morphism on a toric variety [J].
Buch, A ;
Thomsen, JF ;
Lauritzen, N ;
Mehta, V .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) :355-366
[8]   When is the Albanese morphism an algebraic fiber space in positive characteristic? [J].
Ejiri, Sho .
MANUSCRIPTA MATHEMATICA, 2019, 160 (1-2) :239-264
[9]  
Fantechi FGI+05 B., 2005, Mathematical surveys and monographs, V123, DOI 10.1090/surv/123
[10]   Multiplication maps and vanishing theorems for Toric varieties [J].
Fujino, Osamu .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (03) :631-641