Gold Nanoparticle Chains: Synthesis, Characterization, and Modeling Using Spectroscopic Ellipsometry

被引:18
作者
Vieaud, Julien [1 ,2 ]
Gao, Jie [1 ]
Cane, Jeremy [1 ]
Stchakovsky, Michel [4 ]
Naciri, Aotmane En [5 ]
Ariga, Katsuhiko [2 ,3 ]
Oda, Reiko [1 ]
Pouget, Emilie [1 ]
Battie, Yann [5 ]
机构
[1] Univ Bordeaux, CNRS, CBMN, Bordeaux INP,UMR 5248, Allee St Hilaire,Bat B14, F-33607 Pessac, France
[2] NIMS, WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[4] Horiba Sci, Ave Vauve, F-91120 Palaiseau, France
[5] Univ Lorraine, Inst Jean Barriol, LCP A2MC, 1 Bd Arago, F-57070 Metz, France
基金
日本学术振兴会;
关键词
OPTICAL-PROPERTIES; METAL NANOPARTICLES; PLASMON RESONANCES; DIMER ANTENNAS; ARRAYS; MODES; QUANTUM; LIMIT; MORPHOLOGY; SCATTERING;
D O I
10.1021/acs.jpcc.8b01614
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we explore the ability of ellipsometry to characterize colloidal suspensions composed of gold nanoparticle (NP) chains. The complex effective index of these suspensions is deduced from ellipsometric measurement by using a wavelength-by-wavelength inversion without any dispersion law. We show that the effective refractive index of these colloids is defined by the nature of the solvent, whereas their effective extinction coefficient is mainly sensitive to the plasmonic properties of NP chains. The influence of the NP radius distribution and arrangement on the effective extinction coefficient of NP chain are investigated through simulations based on the coupled point dipole method (CDM). We clearly show that this coefficient is mainly sensitive to the interparticle distance and the number of NPs in the longest segment of chains. We demonstrate that the distribution of the number of NPs in the longest segment of chains and their volume fractions can be directly deduced from the ellipsometry by using the CDM.
引用
收藏
页码:11973 / 11984
页数:12
相关论文
共 58 条
[51]   Energy transport in metal nanoparticle chains via sub-radiant plasmon modes [J].
Willingham, Britain ;
Link, Stephan .
OPTICS EXPRESS, 2011, 19 (07) :6450-6461
[52]   ELECTROMAGNETIC SCATTERING BY AN AGGREGATE OF SPHERES [J].
XU, YL .
APPLIED OPTICS, 1995, 34 (21) :4573-4588
[53]   Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing [J].
Yan, Bo ;
Boriskina, Svetlana V. ;
Reinhard, Bjoern M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (50) :24437-24453
[54]   Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas [J].
Yang, Longkun ;
Wang, Hancong ;
Fang, Yan ;
Li, Zhipeng .
ACS NANO, 2016, 10 (01) :1580-1588
[55]   Assembling and ordering polymer-grafted nanoparticles in three dimensions [J].
Zhang, Honghu ;
Wang, Wenjie ;
Akinc, Mufit ;
Mallapragada, Surya ;
Travesset, Alex ;
Vaknin, David .
NANOSCALE, 2017, 9 (25) :8710-8715
[56]   The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width [J].
Zhao, LL ;
Kelly, KL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7343-7350
[57]   Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes [J].
Zou, SL ;
Janel, N ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (23) :10871-10875
[58]   Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer [J].
Zuloaga, Jorge ;
Prodan, Emil ;
Nordlander, Peter .
NANO LETTERS, 2009, 9 (02) :887-891