Gold Nanoparticle Chains: Synthesis, Characterization, and Modeling Using Spectroscopic Ellipsometry

被引:18
作者
Vieaud, Julien [1 ,2 ]
Gao, Jie [1 ]
Cane, Jeremy [1 ]
Stchakovsky, Michel [4 ]
Naciri, Aotmane En [5 ]
Ariga, Katsuhiko [2 ,3 ]
Oda, Reiko [1 ]
Pouget, Emilie [1 ]
Battie, Yann [5 ]
机构
[1] Univ Bordeaux, CNRS, CBMN, Bordeaux INP,UMR 5248, Allee St Hilaire,Bat B14, F-33607 Pessac, France
[2] NIMS, WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[4] Horiba Sci, Ave Vauve, F-91120 Palaiseau, France
[5] Univ Lorraine, Inst Jean Barriol, LCP A2MC, 1 Bd Arago, F-57070 Metz, France
基金
日本学术振兴会;
关键词
OPTICAL-PROPERTIES; METAL NANOPARTICLES; PLASMON RESONANCES; DIMER ANTENNAS; ARRAYS; MODES; QUANTUM; LIMIT; MORPHOLOGY; SCATTERING;
D O I
10.1021/acs.jpcc.8b01614
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we explore the ability of ellipsometry to characterize colloidal suspensions composed of gold nanoparticle (NP) chains. The complex effective index of these suspensions is deduced from ellipsometric measurement by using a wavelength-by-wavelength inversion without any dispersion law. We show that the effective refractive index of these colloids is defined by the nature of the solvent, whereas their effective extinction coefficient is mainly sensitive to the plasmonic properties of NP chains. The influence of the NP radius distribution and arrangement on the effective extinction coefficient of NP chain are investigated through simulations based on the coupled point dipole method (CDM). We clearly show that this coefficient is mainly sensitive to the interparticle distance and the number of NPs in the longest segment of chains. We demonstrate that the distribution of the number of NPs in the longest segment of chains and their volume fractions can be directly deduced from the ellipsometry by using the CDM.
引用
收藏
页码:11973 / 11984
页数:12
相关论文
共 58 条
[1]   Light Concentration at the Nanometer Scale [J].
Alvarez-Puebla, Ramon ;
Liz-Marzan, Luis M. ;
Javier Garcia de Abajo, F. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (16) :2428-2434
[2]  
[Anonymous], 2008, ANGEW CHEM
[3]   Surface Plasmon Resonances in Strongly Coupled Gold Nanosphere Chains from Monomer to Hexamer [J].
Barrow, Steven J. ;
Funston, Alison M. ;
Gomez, Daniel E. ;
Davis, Tim J. ;
Mulvaney, Paul .
NANO LETTERS, 2011, 11 (10) :4180-4187
[4]   Determination of morphological characteristics of metallic nanoparticles based on modified Maxwell-Garnett fitting of optical responses [J].
Battie, Y. ;
Resano-Garcia, A. ;
Naciri, A. En ;
Akil, S. ;
Chaoui, N. .
APPLIED PHYSICS LETTERS, 2015, 107 (14)
[5]   Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix [J].
Battie, Y. ;
Resano-Garcia, A. ;
Chaoui, N. ;
Zhang, Y. ;
Naciri, A. En .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (04)
[6]   Ellipsometry of Colloidal Solutions: New Experimental Setup and Application to Metallic Colloids [J].
Battie, Yann ;
Stchakovsky, Michel ;
Naciri, Aotmane En ;
Akil, Suzanna ;
Chaoui, Nouari ;
Broch, Laurent .
LANGMUIR, 2017, 33 (30) :7425-7434
[7]   Plasmon modes of nanosphere trimers and quadrumers [J].
Brandl, Daniel W. ;
Mirin, Nikolay A. ;
Nordlander, Peter .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (25) :12302-12310
[8]   Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit [J].
Brongersma, ML ;
Hartman, JW ;
Atwater, HA .
PHYSICAL REVIEW B, 2000, 62 (24) :16356-16359
[9]   Probing Quantum Plasmon Coupling Using Gold Nanoparticle Dimers with Tunable Interparticle Distances Down to the Subnanometer Range [J].
Cha, Hoon ;
Yoon, Jun Hee ;
Yoon, Sangwoon .
ACS NANO, 2014, 8 (08) :8554-8563
[10]   Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers [J].
Chen, Gang ;
Wang, Yong ;
Yang, Miaoxin ;
Xu, Jun ;
Goh, Sook Jin ;
Pan, Ming ;
Chen, Hongyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (11) :3644-+