Hybrid 3D Printing of Advanced Hydrogel-Based Wound Dressings with Tailorable Properties

被引:59
|
作者
Milojevic, Marko [1 ,2 ]
Harih, Gregor [3 ]
Vihar, Bostjan [1 ,4 ]
Vajda, Jernej [1 ]
Gradisnik, Lidija [1 ]
Zidaric, Tanja [1 ]
Stana Kleinschek, Karin [5 ]
Maver, Uros [1 ,2 ]
Maver, Tina [2 ,6 ]
机构
[1] Univ Maribor, Inst Biomed Sci, Fac Med, Taborska Ulica 8, SI-2000 Maribor, Slovenia
[2] Univ Maribor, Dept Pharmacol, Fac Med, Taborska Ulica 8, SI-2000 Maribor, Slovenia
[3] Univ Maribor, Lab Intelligent CAD Syst, Fac Mech Engn, Smetanova 17, SI-2000 Maribor, Slovenia
[4] IRNAS Ltd, Valvasorjeva 42, SI-2000 Maribor, Slovenia
[5] Graz Univ Technol, Inst Chem & Technol Biobased Syst, Stremayrgasse 9, AT-8010 Graz, Austria
[6] Univ Maribor, Lab Characterisat & Proc Polymers, Fac Mech Engn, Smetanova 17, SI-2000 Maribor, Slovenia
关键词
3D printing; wound dressings; alginate; carboxymethyl cellulose; polycaprolactone; polysaccharide-based scaffolds; CARBOXYMETHYL CELLULOSE; MECHANICAL-PROPERTIES; COLORIMETRIC ASSAY; DRUG-DELIVERY; ELECTROSPUN; SCAFFOLDS; POLYSACCHARIDE; ALGINATE; CALCIUM; RELEASE;
D O I
10.3390/pharmaceutics13040564
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Despite the extensive utilization of polysaccharide hydrogels in regenerative medicine, current fabrication methods fail to produce mechanically stable scaffolds using only hydrogels. The recently developed hybrid extrusion-based bioprinting process promises to resolve these current issues by facilitating the simultaneous printing of stiff thermoplastic polymers and softer hydrogels at different temperatures. Using layer-by-layer deposition, mechanically advantageous scaffolds can be produced by integrating the softer hydrogel matrix into a stiffer synthetic framework. This work demonstrates the fabrication of hybrid hydrogel-thermoplastic polymer scaffolds with tunable structural and chemical properties for applications in tissue engineering and regenerative medicine. Through an alternating deposition of polycaprolactone and alginate/carboxymethylcellulose gel strands, scaffolds with the desired architecture (e.g., filament thickness, pore size, macro-/microporosity), and rheological characteristics (e.g., swelling capacity, degradation rate, and wettability) were prepared. The hybrid fabrication approach allows the fine-tuning of wettability (approx. 50-75 degrees), swelling (approx. 0-20x increased mass), degradability (approx. 2-30+ days), and mechanical strength (approx. 0.2-11 MPa) in the range between pure hydrogels and pure thermoplastic polymers, while providing a gradient of surface properties and good biocompatibility. The controlled degradability and permeability of the hydrogel component may also enable controlled drug delivery. Our work shows that the novel hybrid hydrogel-thermoplastic scaffolds with adjustable characteristics have immense potential for tissue engineering and can serve as templates for developing novel wound dressings.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] RHEOLOGICAL CHARACTERIZATION AND COMPARISON OF PRINTING HYDROGEL-BASED COMPOSITE INKS FOR EXTRUSION-BASED 3D PRINTING
    Wozniak, Anna
    Biernat, Monika
    Swieszkowski, Wojciech
    Szterner, Piotr
    Gizowska, Magdalena
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1290 - 1291
  • [22] Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration
    Ramiah, Previn
    du Toit, Lisa C.
    Choonara, Yahya E.
    Kondiah, Pierre P. D.
    Pillay, Viness
    FRONTIERS IN MATERIALS, 2020, 7
  • [23] Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks
    Cui, Xiaolin
    Li, Jun
    Hartanto, Yusak
    Durham, Mitchell
    Tang, Junnan
    Zhang, Hu
    Hooper, Gary
    Lim, Khoon
    Woodfield, Tim
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (15)
  • [24] Smart 3D Printed Auxetic Hydrogel Skin Wound Dressings
    Tsegay, Filmon
    Elsherif, Mohamed
    Alam, Fahad
    Butt, Haider
    ACS APPLIED BIO MATERIALS, 2022, 5 (12) : 5545 - 5553
  • [25] Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing
    Kumar, Alok
    Wang, Xiang
    Nune, Krishna Chaitanya
    Misra, R. D. K.
    INTERNATIONAL WOUND JOURNAL, 2017, 14 (06) : 1076 - 1087
  • [26] Liquid metal hybrid antibacterial hydrogel scaffolds from 3D printing for wound healing
    Li, Jinbo
    Wang, Yu
    Fan, Lu
    Wang, Xiaoju
    Shang, Luoran
    Zhang, Hongbo
    Zhao, Yuanjin
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [27] Hydrogel-based reinforcement of 3D bioprinted constructs
    Melchels, Ferry P. W.
    Blokzijl, Maarten M.
    Levato, Riccardo
    Peiffer, Quentin C.
    de Ruijter, Mylene
    Hennink, Wim E.
    Vermonden, Tina
    Malda, Jos
    BIOFABRICATION, 2016, 8 (03)
  • [28] Skin wounds, the healing process, and hydrogel-based wound dressings: a short review
    de Lima Lima, Tainara de Paula
    Passos, Marcele Fonseca
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2021, 32 (14) : 1910 - 1925
  • [29] An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues
    Das, Soumitra
    Basu, Bikramjit
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (03) : 405 - 428
  • [30] 3D Printed Hydrogel-Based Sensors for Quantifying UV Exposure
    Finny, Abraham Samuel
    Jiang, Cindy
    Andreescu, Silvana
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (39) : 43911 - 43920