The Parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation - A novel mechanism of toxicity

被引:259
作者
Lotharius, J [1 ]
O'Malley, KL [1 ]
机构
[1] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M005385200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Uptake of the Parkinsonism-inducing toxin, 1-methyl-4-phenylpyridinium (MPP+), into dopaminergic terminals is thought to block Complex I activity leading to ATP loss and overproduction of reactive oxygen species (ROS). The present study indicates that MPP+-induced ROS formation is not mitochondrial in origin but results from intracellular dopamine (DA) oxidation. Although a mean lethal dose of MPP+ led to ROS production in identified dopaminergic neurons, toxic doses of the Complex I inhibitor rotenone did not. Concurrent with ROS formation, MPP+ redistributed vesicular DA to the cytoplasm prior to its extrusion from the cell by reverse transport via the DA transporter. MPP+-induced DA redistribution was also associated with cell death. Depleting cells of newly synthesized and/or stored DA significantly attenuated both superorxide production and cell death, whereas enhancing intracellular DA content exacerbated dopaminergic sensitivity to MPP+. Lastly, depleting cells of DA in the presence of succinate completely abolished MPP+-induced cell death. Thus, MPP+ neurotoxicity is a multi-component process involving both mitochondrial dysfunction and ROS generated by vesicular DA displacement. These results suggest that in the presence of a Complex I defect, misregulation of DA storage could lead to the loss of nigrostriatal neurons in Parkinson's disease.
引用
收藏
页码:38581 / 38588
页数:8
相关论文
共 86 条
[1]   INVOLVEMENT OF FREE-RADICALS IN MPP(+) NEUROTOXICITY AGAINST RAT DOPAMINERGIC-NEURONS IN CULTURE [J].
AKANEYA, Y ;
TAKAHASHI, M ;
HATANAKA, H .
NEUROSCIENCE LETTERS, 1995, 193 (01) :53-56
[2]   Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver [J].
Andreyev, A ;
Fiskum, G .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (09) :825-832
[3]   Titrating the effects of mitochondrial complex I impairment in the cell physiology [J].
Barrientos, A ;
Moraes, CT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16188-16197
[4]   Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical [J].
Benov, L ;
Sztejnberg, L ;
Fridovich, I .
FREE RADICAL BIOLOGY AND MEDICINE, 1998, 25 (07) :826-831
[5]   Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson's disease [J].
Berman, SB ;
Hastings, TG .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (03) :1127-1137
[6]  
Bindokas VP, 1996, J NEUROSCI, V16, P1324
[7]   BIOENERGETIC AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISEASES [J].
BOWLING, AC ;
BEAL, MF .
LIFE SCIENCES, 1995, 56 (14) :1151-1171
[8]  
Budd SL, 1996, J NEUROCHEM, V67, P2282
[9]   Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells [J].
Budd, SL ;
Castilho, RF ;
Nicholls, DG .
FEBS LETTERS, 1997, 415 (01) :21-24
[10]   The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism [J].
Cassarino, DS ;
Parks, JK ;
Parker, WD ;
Bennett, JP .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1999, 1453 (01) :49-62