Existence and multiplicity of positive periodic solutions to Minkowski-curvature equations without coercivity condition

被引:6
作者
Yu, Xingchen [1 ]
Lu, Shiping [1 ]
Kong, Fanchao [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Minkowski-curvature equation; Periodic solution; Degree theory; Upper and lower functions;
D O I
10.1016/j.jmaa.2021.125840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, non-existence and multiplicity of positive periodic solutions to a class of Minkowski-curvature equations with indefinite attractive singularities. A multiplicity result of Ambrosetti-Prodi type is established using a new method of construction of lower functions and some properties of Leray-Schauder degree.(c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 15 条
[1]   On a prescribed mean curvature equation in Lorentz-Minkowski space [J].
Azzollini, A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (06) :1122-1140
[2]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[3]   Positive periodic solutions to an indefinite Minkowski-curvature equation [J].
Boscaggin, Alberto ;
Feltrin, Guglielmo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (07) :5595-5645
[4]   Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight [J].
Boscaggin, Alberto ;
Feltrin, Guglielmo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
[5]  
Coelho I, 2012, ADV NONLINEAR STUD, V12, P621
[6]  
Coster C. D., 2006, 2 POINT BOUNDARY VAL
[7]   A MULTIPLICITY RESULT FOR PERIODIC-SOLUTIONS OF FORCED NONLINEAR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
FABRY, C ;
MAWHIN, J ;
NKASHAMA, MN .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :173-180
[8]  
Feltrin G, 2019, NODEA-NONLINEAR DIFF, V26, DOI 10.1007/s00030-019-0585-3
[9]   On a singular periodic Ambrosetti-Prodi problem [J].
Fonda, Alessandro ;
Sfecci, Andrea .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 :146-155
[10]   Existence and multiplicity of periodic solutions to differential equations with attractive singularities [J].
Godoy, Jose ;
Hakl, Robert ;
Yu, Xingchen .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (02) :402-427