Parametric Study of ICME Properties Related to Space Weather Disturbances via a Series of Three-Dimensional MHD Simulations

被引:10
作者
An, Junmo [1 ]
Magara, Tetsuya [1 ,2 ]
Hayashi, Keiji [3 ,4 ,5 ]
Moon, Yong-Jae [1 ,2 ]
机构
[1] Kyung Hee Univ, Sch Space Res, Yongin 17104, Gyeonggi Do, South Korea
[2] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 17104, Gyeonggi Do, South Korea
[3] NWRA, 3380 Mitchell Ln, Boulder, CO 80301 USA
[4] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan
[5] Stanford Univ, HEPL, Stanford, CA 94305 USA
基金
新加坡国家研究基金会;
关键词
Coronal mass ejections; interplanetary; Magnetic fields; Solar wind; disturbances; CORONAL MASS EJECTIONS; SOLAR-WIND; MAGNETIC CLOUDS; INTERPLANETARY; PROPAGATION; SUN; SYSTEMS; SCHEME; MODEL;
D O I
10.1007/s11207-019-1531-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Interplanetary coronal mass ejections (ICMEs) are important drivers of space-weather disturbances observed at the Earth. We use a parameterized ICME model to investigate the relation between the physical properties of an ICME and these disturbances. Compared to those studies focused on deriving a best set of ICME parameter values matched with observed disturbances, this study is aimed at investigating the role of each parameter in producing space-weather disturbances. Toward this end, we performed a series of three-dimensional magnetohydrodynamic (MHD) simulations with different sets of ICME parameter values. These parameters are the location, speed, mass, magnetic field strength, and magnetic field orientation of a spheromak-shaped ICME, which is injected into the solar wind reconstructed from near-Sun data and interplanetary scintillation (IPS) data via an MHD-IPS tomography method. By comparing simulation results to in situ observations near the Earth we discuss how the physical properties of an ICME affect space-weather disturbances at the Earth.
引用
收藏
页数:17
相关论文
共 59 条
[1]   MAGNETIC FIELDS AND STRUCTURE OF SOLAR CORONA .I. METHODS OF CALCULATING CORONAL FIELDS [J].
ALTSCHULER, MD ;
NEWKIRK, G .
SOLAR PHYSICS, 1969, 9 (01) :131-+
[2]   The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches [J].
Bobra, M. G. ;
Sun, X. ;
Hoeksema, J. T. ;
Turmon, M. ;
Liu, Y. ;
Hayashi, K. ;
Barnes, G. ;
Leka, K. D. .
SOLAR PHYSICS, 2014, 289 (09) :3549-3578
[3]   AN UPWIND DIFFERENCING SCHEME FOR THE EQUATIONS OF IDEAL MAGNETOHYDRODYNAMICS [J].
BRIO, M ;
WU, CC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 75 (02) :400-422
[4]  
BURLAGA L, 1981, J GEOPHYS RES-SPACE, V86, P6673, DOI 10.1029/JA086iA08p06673
[5]   IMPACT OF THE ICME-EARTH GEOMETRY ON THE STRENGTH OF THE ASSOCIATED GEOMAGNETIC STORM: THE SEPTEMBER 2014 AND MARCH 2015 EVENTS [J].
Cho, K. -S. ;
Marubashi, K. ;
Kim, R. -S. ;
Park, S. -H. ;
Lim, E. -K. ;
Kim, S. -J. ;
Kumar, P. ;
Yurchyshyn, V. ;
Moon, Y. -J. ;
Lee, J. -O. .
JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 2017, 50 (02) :29-39
[6]   A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations [J].
Clyne, J ;
Rast, M .
VISUALIZATION AND DATA ANALYSIS 2005, 2005, 5669 :284-294
[7]   Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation [J].
Clyne, John ;
Mininni, Pablo ;
Norton, Alan ;
Rast, Mark .
NEW JOURNAL OF PHYSICS, 2007, 9
[8]   Magnetic helicity generation by solar differential rotation [J].
DeVore, CR .
ASTROPHYSICAL JOURNAL, 2000, 539 (02) :944-953
[9]   Interplanetary conditions causing intense geomagnetic storms (Dst ≤-100 nT) during solar cycle 23 (1996-2006) [J].
Echer, E. ;
Gonzalez, W. D. ;
Tsurutani, B. T. ;
Gonzalez, A. L. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A5)
[10]   Solar Magnetic Flux Ropes [J].
Filippov, Boris ;
Martsenyuk, Olesya ;
Srivastava, Abhishek K. ;
Uddin, Wahab .
JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2015, 36 (01) :157-184