Benchmarking an 11-qubit quantum computer

被引:344
作者
Wright, K. [1 ]
Beck, K. M. [1 ]
Debnath, S. [1 ]
Amini, J. M. [1 ]
Nam, Y. [1 ]
Grzesiak, N. [1 ]
Chen, J. -S. [1 ]
Pisenti, N. C. [1 ]
Chmielewski, M. [1 ,2 ,3 ]
Collins, C. [1 ]
Hudek, K. M. [1 ]
Mizrahi, J. [1 ]
Wong-Campos, J. D. [1 ]
Allen, S. [1 ]
Apisdorf, J. [1 ]
Solomon, P. [1 ]
Williams, M. [1 ]
Ducore, A. M. [1 ]
Blinov, A. [1 ]
Kreikemeier, S. M. [1 ]
Chaplin, V. [1 ]
Keesan, M. [1 ]
Monroe, C. [1 ,2 ,3 ]
Kim, J. [1 ,4 ]
机构
[1] IonQ Inc, College Pk, MD 20740 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
ALGORITHMS;
D O I
10.1038/s41467-019-13534-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 Yb-171(+) ions. We demonstrate average single-qubit gate fidelities of 99.5%, average two-qubit-gate fidelities of 97.5%, and SPAM errors of 0.7%. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78% and 35%, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[2]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[3]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[4]  
Blumel R., 2019, PREPRINT
[5]   Quantum spin dynamics and entanglement generation with hundreds of trapped ions [J].
Bohnet, Justin G. ;
Sawyer, Brian C. ;
Britton, Joseph W. ;
Wall, Michael L. ;
Rey, Ana Maria ;
Foss-Feig, Michael ;
Bollinger, John J. .
SCIENCE, 2016, 352 (6291) :1297-1301
[6]   Optimal Quantum Control of Multimode Couplings between Trapped Ion Qubits for Scalable Entanglement [J].
Choi, T. ;
Debnath, S. ;
Manning, T. A. ;
Figgatt, C. ;
Gong, Z. -X. ;
Duan, L. -M. ;
Monroe, C. .
PHYSICAL REVIEW LETTERS, 2014, 112 (19)
[7]   Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits [J].
Chow, Jerry M. ;
Gambetta, Jay M. ;
Corcoles, A. D. ;
Merkel, Seth T. ;
Smolin, John A. ;
Rigetti, Chad ;
Poletto, S. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Rozen, J. R. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[8]   High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors [J].
Crain, Stephen ;
Cahall, Clinton ;
Vrijsen, Geert ;
Wollman, Emma E. ;
Shaw, Matthew D. ;
Verma, Varun B. ;
Nam, Sae Woo ;
Kim, Jungsang .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[9]   Demonstration of a small programmable quantum computer with atomic qubits [J].
Debnath, S. ;
Linke, N. M. ;
Figgatt, C. ;
Landsman, K. A. ;
Wright, K. ;
Monroe, C. .
NATURE, 2016, 536 (7614) :63-+
[10]   Performing quantum computing experiments in the cloud [J].
Devitt, Simon J. .
PHYSICAL REVIEW A, 2016, 94 (03)