PUSHOUTS OF CATEGORIES, DERIVED LIMITS, AND COLIMITS

被引:0
作者
Vokrinek, Lukas [1 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Kotlarska, CS-61137 Brno, Czech Republic
关键词
Derived limit; Derived colimit; Mayer-Vietoris sequence; Pushout of categories;
D O I
10.1080/00927872.2015.1033718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a counterexample to a theorem of Ford, namely a pushout square of categories with all involved functors injective, such that there is no associated exact "Mayer-Vietoris" sequence of derived limits. Further, we construct a Mayer-Vietoris sequence for derived (co) limits under some additional hypotheses, extending the well-known case of a pushout square of group monomorphisms.
引用
收藏
页码:2110 / 2117
页数:8
相关论文
共 6 条
[1]  
[Anonymous], 2001, ALGEBRAIC TOPOLOGY
[2]   A MAYER-VIETORIS SEQUENCE FOR MODULES OVER A SMALL CATEGORY [J].
FORD, FJ .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (11) :3977-3982
[3]  
Hirschhorn P S, 2003, Math. Surv. Monogr., V99
[4]   Cohomology of the Grothendieck construction [J].
Pirashvili, Teimuraz ;
Redondo, Mari a Julia .
MANUSCRIPTA MATHEMATICA, 2006, 120 (02) :151-162
[5]  
Thomason R., 1980, Cah. Topol. Geom. Differ., V21, P305