An Automated Scanning Transmission Electron Microscope Guided by Sparse Data Analytics

被引:19
作者
Olszta, Matthew [1 ]
Hopkins, Derek [2 ]
Fiedler, Kevin R. [3 ]
Oostrom, Marjolein [4 ]
Akers, Sarah [4 ]
Spurgeon, Steven R. [1 ,5 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[2] Pacific Northwest Natl Lab, Environmentai Mol Sci Lab, Richland, WA 99352 USA
[3] Washington State Univ Tricities, Coll Arts & Sci, Richland, WA 99354 USA
[4] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA
[5] Univ Washington, Dept Phys, Seattle, WA 98195 USA
关键词
automation; high-throughput; machine learning; scanning transmission electron microscopy; sparse data analytics; HIGH-THROUGHPUT; MATERIALS SCIENCE; BIG DATA; CRYO-EM; GENERATION; IMAGE; EXPERIMENTATION; OPTIMIZATION; PLATFORM; MOO3;
D O I
10.1017/S1431927622012065
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Artificial intelligence (AI) promises to reshape scientific inquiry and enable breakthrough discoveries in areas such as energy storage, quantum computing, and biomedicine. Scanning transmission electron microscopy (STEM), a cornerstone of the study of chemical and materials systems, stands to benefit greatly from AI-driven automation. However, present barriers to low-level instrument control, as well as generalizable and interpretable feature detection, make truly automated microscopy impractical. Here, we discuss the design of a closed-loop instrument control platform guided by emerging sparse data analytics. We hypothesize that a centralized controller, informed by machine learning combining limited a priori knowledge and task-based discrimination, could drive on-the-fly experimental decision-making. This platform may unlock practical, automated analysis of a variety of material features, enabling new high-throughput and statistical studies.
引用
收藏
页码:1611 / 1621
页数:11
相关论文
共 76 条
  • [1] Automation of X-ray crystallography
    Abola, E
    Kuhn, P
    Earnest, T
    Stevens, RC
    [J]. NATURE STRUCTURAL BIOLOGY, 2000, 7 (Suppl 11) : 973 - 977
  • [2] Crystallographic prediction from diffraction and chemistry data for higher throughput classification using machine learning
    Aguiar, Jeffery A.
    Gong, Matthew L.
    Tasdizen, Tolga
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
  • [3] Rapid and flexible segmentation of electron microscopy data using few-shot machine learning
    Akers, Sarah
    Kautz, Elizabeth
    Trevino-Gavito, Andrea
    Olszta, Matthew
    Matthews, Bethany E.
    Wang, Le
    Du, Yingge
    Spurgeon, Steven R.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [4] Low Data Drug Discovery with One-Shot Learning
    Altae-Tran, Han
    Ramsundar, Bharath
    Pappu, Aneesh S.
    Pande, Vijay
    [J]. ACS CENTRAL SCIENCE, 2017, 3 (04) : 283 - 293
  • [5] Automation of macromolecular crystallography beamlines
    Arzt, S
    Beteva, A
    Cipriani, F
    Delageniere, S
    Felisaz, F
    Förstner, G
    Gordon, E
    Launer, L
    Lavault, B
    Leonard, G
    Mairs, T
    McCarthy, A
    McCarthy, J
    McSweeney, S
    Meyer, J
    Mitchell, E
    Monaco, S
    Nurizzo, D
    Ravelli, R
    Rey, V
    Shepard, W
    Spruce, D
    Svensson, O
    Theveneau, P
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2005, 89 (02) : 124 - 152
  • [6] Authors, 2021, ZEROMQ OPEN SOURCE U
  • [7] More Is Less: Signal Processing and the Data Deluge
    Baraniuk, Richard G.
    [J]. SCIENCE, 2011, 331 (6018) : 717 - 719
  • [8] Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
    Belianinov, Alex
    Vasudevan, Rama
    Strelcov, Evgheni
    Steed, Chad
    Yang, Sang Mo
    Tselev, Alexander
    Jesse, Stephen
    Biegalski, Michael
    Shipman, Galen
    Symons, Christopher
    Borisevich, Albina
    Archibald, Rick
    Kalinin, Sergei
    [J]. ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2015, 1
  • [9] The Materials Data Facility: Data Services to Advance Materials Science Research
    Blaiszik, B.
    Chard, K.
    Pruyne, J.
    Ananthakrishnan, R.
    Tuecke, S.
    Foster, I.
    [J]. JOM, 2016, 68 (08) : 2045 - 2052
  • [10] A data ecosystem to support machine learning in materials science
    Blaiszik, Ben
    Ward, Logan
    Schwarting, Marcus
    Gaff, Jonathon
    Chard, Ryan
    Pike, Daniel
    Chard, Kyle
    Foster, Ian
    [J]. MRS COMMUNICATIONS, 2019, 9 (04) : 1125 - 1133