Direct Observation of Dopant Atom Diffusion in a Bulk Semiconductor Crystal Enhanced by a Large Size Mismatch

被引:88
作者
Ishikawa, Ryo [1 ,2 ]
Mishra, Rohan [1 ,3 ]
Lupini, Andrew R. [1 ]
Findlay, Scott D. [4 ]
Taniguchi, Takashi [5 ]
Pantelides, Sokrates T. [1 ,3 ]
Pennycook, Stephen J. [6 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia
[5] Natl Inst Mat Sci, Adv Key Technol Div, Tsukuba, Ibaraki 3050044, Japan
[6] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金
澳大利亚研究理事会;
关键词
HIGH-PRESSURE; SILICON; MECHANISM; FERROMAGNETISM; TEMPERATURE; MICROSCOPY; OXYGEN;
D O I
10.1103/PhysRevLett.113.155501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion is one of the fundamental processes that govern the structure, processing, and properties of materials and it plays a crucial role in determining device lifetimes. However, direct observations of diffusion processes have been elusive and limited only to the surfaces of materials. Here we use an aberration-corrected electron microscope to locally excite and directly image the diffusion of single Ce and Mn dopants inside bulk wurtzite-type AlN single crystals, identifying correlated vacancy-dopant and interstitial-dopant kick-out mechanisms. Using a 200 kV electron beam to supply energy, we observe a higher frequency of dopant jumps for the larger and heavier Ce atoms than the smaller Mn atoms. These observations confirm density-functional-theory-based predictions of a decrease in diffusion barrier for large substitutional atoms. The results show that combining depth sensitive microscopy with theoretical calculations represents a new methodology to investigate diffusion mechanisms, not restricted to surface phenomena, but within bulk materials.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Nanoscale mapping of ion diffusion in a lithium-ion battery cathode [J].
Balke, N. ;
Jesse, S. ;
Morozovska, A. N. ;
Eliseev, E. ;
Chung, D. W. ;
Kim, Y. ;
Adamczyk, L. ;
Garcia, R. E. ;
Dudney, N. ;
Kalinin, S. V. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :749-754
[2]  
BARDEEN J, 1951, ATOM MOVEMENTS
[3]  
Bardeen J., 1952, IMPERFECTIONS NEARLY
[4]   1ST-PRINCIPLES CALCULATIONS OF DIFFUSION-COEFFICIENTS - HYDROGEN IN SILICON [J].
BLOCHL, PE ;
VAN DE WALLE, CG ;
PANTELIDES, ST .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1401-1404
[5]   MICROSCOPIC THEORY OF IMPURITY-DEFECT REACTIONS AND IMPURITY DIFFUSION IN SILICON [J].
CAR, R ;
KELLY, PJ ;
OSHIYAMA, A ;
PANTELIDES, ST .
PHYSICAL REVIEW LETTERS, 1985, 54 (04) :360-363
[6]   POINT-DEFECTS AND DOPANT DIFFUSION IN SILICON [J].
FAHEY, PM ;
GRIFFIN, PB ;
PLUMMER, JD .
REVIEWS OF MODERN PHYSICS, 1989, 61 (02) :289-384
[7]   SURFACE-DIFFUSION AND PHASE-TRANSITION ON THE GE(111) SURFACE STUDIED BY SCANNING TUNNELING MICROSCOPY [J].
FEENSTRA, RM ;
SLAVIN, AJ ;
HELD, GA ;
LUTZ, MA .
PHYSICAL REVIEW LETTERS, 1991, 66 (25) :3257-3260
[8]   MECHANISM OF DIFFUSION OF COPPER IN GERMANIUM [J].
FRANK, FC ;
TURNBULL, D .
PHYSICAL REVIEW, 1956, 104 (03) :617-618
[9]   Atomic-Scale Engineering of the Electrostatic Landscape of Semiconductor Surfaces [J].
Gohlke, David ;
Mishra, Rohan ;
Restrepo, Oscar D. ;
Lee, Donghun ;
Windl, Wolfgang ;
Gupta, Jay .
NANO LETTERS, 2013, 13 (06) :2418-2422
[10]   MECHANISM AND KINETICS OF THE DIFFUSION OF GOLD IN SILICON [J].
GOSELE, U ;
FRANK, W ;
SEEGER, A .
APPLIED PHYSICS, 1980, 23 (04) :361-368