Multipartite nonlocality in one-dimensional quantum spin chains at finite temperatures

被引:14
作者
Sun, Zhao-Yu [1 ]
Li, Meng [1 ]
Sheng, Long-Hui [2 ]
Guo, Bin [2 ]
机构
[1] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Peoples R China
[2] Wuhan Univ Technol, Dept Phys, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT;
D O I
10.1103/PhysRevA.103.052205
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Multipartite nonlocality is an important measure of multipartite quantum correlations. In this paper, we show that the nonlocal n-site Mermin-Klyshko operator (M) over cap (n) can be exactly expressed as a matrix product operator with a bond dimension D = 2, and then the calculation of nonlocality measure S can be simplified into standard one-dimensional (1D) tensor networks. With the help of this technique, we analyze finite-temperature multipartite nonlocality in several typical 1D spin chains, including an XX model, an XXZ model, and a Kitaev model. For the XX model and the XXZ model, in a finite-temperature region, the logarithm measure of nonlocality (log(2) S) is a linear function of the temperature T, i.e., log(2) S similar to -aT + b. It provides us with an intuitive picture about how thermodynamic fluctuations destroy multipartite nonlocality in 1D quantum chains. Moreover, in the XX model S presents a magnetic-field-induced oscillation at low temperatures. This behavior has a nonlocal nature and cannot be captured by local properties such as the magnetization. Finally, for the Kitaev model, we find that in the limit T -> 0 and N -> infinity the nonlocality measure may be used as an alternative order parameter for the topological-type quantum phase transition in the model.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Definitions of multipartite nonlocality [J].
Bancal, Jean-Daniel ;
Barrett, Jonathan ;
Gisin, Nicolas ;
Pironio, Stefano .
PHYSICAL REVIEW A, 2013, 88 (01)
[2]   Detecting Genuine Multipartite Quantum Nonlocality: A Simple Approach and Generalization to Arbitrary Dimensions [J].
Bancal, Jean-Daniel ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Liang, Yeong-Cherng .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[3]   Quantifying Multipartite Nonlocality [J].
Bancal, Jean-Daniel ;
Branciard, Cyril ;
Gisin, Nicolas ;
Pironio, Stefano .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[4]   Multipartite nonlocality in the Lipkin-Meshkov-Glick model [J].
Bao, Jia ;
Guo, Bin ;
Cheng, Hong-Guang ;
Zhou, Mu ;
Fu, Jin ;
Deng, Yi-Chen ;
Sun, Zhao-Yu .
PHYSICAL REVIEW A, 2020, 101 (01)
[5]   Nonlocality and entanglement in qubit systems [J].
Batle, J. ;
Casas, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (44)
[6]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[7]  
Belinskii A. V., 1993, Physics-Uspekhi, V36, P653, DOI 10.1070/PU1993v036n08ABEH002299
[8]   Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality [J].
Bowles, Joseph ;
Francfort, Jeremie ;
Fillettaz, Mathieu ;
Hirsch, Flavien ;
Brunner, Nicolas .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)
[9]   Testing the Structure of Multipartite Entanglement with Bell Inequalities [J].
Brunner, Nicolas ;
Sharam, James ;
Vertesi, Tamas .
PHYSICAL REVIEW LETTERS, 2012, 108 (11)
[10]   Multipartite nonlocality in a thermalized Ising spin chain [J].
Campbell, Steve ;
Paternostro, Mauro .
PHYSICAL REVIEW A, 2010, 82 (04)