Effect of Target Moisture on Laser Scanner Intensity

被引:40
作者
Kaasalainen, Sanna [1 ]
Niittymaki, Henri [2 ]
Krooks, Anssi [1 ]
Koch, Katharina [1 ]
Kaartinen, Harri [1 ]
Vain, Ants [1 ,4 ]
Hyyppa, Hannu [3 ]
机构
[1] Finnsih Geodet Inst, Dept Remote Sensing & Photogrammetry, Masala 02431, Finland
[2] Univ Helsinki, Dept Phys, Espoo 00014, Finland
[3] Aalto Univ, Res Inst Measuring & Modelling Built Environm, Dept Surveying, FIN-02150 Espoo, Finland
[4] Estonian Univ Life Sci, EE-51014 Tartu, Estonia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2010年 / 48卷 / 04期
基金
芬兰科学院;
关键词
Laser measurements; laser radar; laser radiation effects; remote sensing; SOIL-MOISTURE; AIRBORNE; LIDAR; CALIBRATION; RETRIEVAL;
D O I
10.1109/TGRS.2009.2036841
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We have studied the effect of moisture on the backscatter reflectance of mineral aggregate (such as sand and gravel) targets that are used as reflectance standards in airborne laser scanning intensity calibration. Target moisture has turned out to be a crucial factor when using external reference targets (either commercial or naturally available at the measurement site). The most common targets used thus far are different types of gravel and sand, which emphasizes the role of moisture because of the long time required for drying. We carried out laboratory and field experiments to find out how moisture affects the performance of these targets as reference standards. We found that even small amount of moisture has a crucial effect on target reflectance properties: The backscattered reflectance decreases strongly up to 10% gravimetric water content, after which the reflectance level mostly remains constant. The moisture effect has to be further studied and taken into account in the retrieval and calibration of laser scanner intensity data acquired in moist conditions. We also demonstrate a practical method of deriving the surface backscattered reflectance at different moisture contents with a digital camera.
引用
收藏
页码:2128 / 2136
页数:9
相关论文
共 34 条
[1]  
AHOKAS E, 2006, P ISPRS COMM 1 S INT, P36
[2]  
BARBER DM, 2007, P 5 INT S MMT
[3]   Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec [J].
Boudreau, Jonathan ;
Nelson, Ross F. ;
Margolis, Hank A. ;
Beaudoin, Andre ;
Guindon, Luc ;
Kimes, Daniel S. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) :3876-3890
[4]   Calibration of full-waveform airborne laser scanning data for object classification [J].
Briese, Christian ;
Hoefle, Bernhard ;
Lehner, Hubert ;
Wagner, Wolfgang ;
Pfennigbauer, Martin ;
Ullrich, Andreas .
LASER RADAR TECHNOLOGY AND APPLICATIONS XIII, 2008, 6950
[5]   Radiometric correction in laser scanning [J].
Coren, Franco ;
Sterzai, Paolo .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (15) :3097-3104
[6]   Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas [J].
Dalponte, Michele ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05) :1416-1427
[7]   Forest canopy gap fraction from terrestrial laser scanning [J].
Danson, F. Mark ;
Hetherington, David ;
Morsdorf, Felix ;
Koetz, Benjamin ;
Allgoewer, Britta .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (01) :157-160
[8]   Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data [J].
Donoghue, Daniel N. M. ;
Watt, Peter J. ;
Cox, Nicholas J. ;
Wilson, Jimmy .
REMOTE SENSING OF ENVIRONMENT, 2007, 110 (04) :509-522
[9]  
Hapke B, 1993, THEORY REFLECTANCE E, P469, DOI DOI 10.1017/CBO9780511524998
[10]   Correction of laser scanning intensity data:: Data and model-driven approaches [J].
Hoefle, Bernhard ;
Pfeifer, Norbert .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2007, 62 (06) :415-433