Algebraic points of bounded height on a surface

被引:6
作者
Le Rudulier, Cecile [1 ]
机构
[1] Univ Rennes 1, Inst Rech Math Rennes IRMAR, Beaulieu Batiment 22-23,263 Ave Gen Leclerc, F-35042 Rennes, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2019年 / 147卷 / 04期
关键词
RATIONAL-POINTS; MANIFOLDS; FAMILIES; THEOREM; NUMBER;
D O I
10.24033/bsmf.2796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the asymptotic cardinality of the set of algebraic points of fixed degree and bounded height of a surface defined over a number field, when the bound on the height tends to infinity. In particular, we show that this can be connected to the Batyrev-Manin-Peyre conjecture, i.e. the case of rational points, on some punctual Hilbert scheme. Our study shows that these associated Hilbert schemes provide, under certain conditions, new counterexamples to the Batyrev-Manin-Peyre conjecture. However, in the cases of P-1 x P-1 and P-2 detailed in this article, the associated Hilbert schemes satisfy a slightly weaker version of the Batyrev-Manin-Peyre conjecture.
引用
收藏
页码:705 / 748
页数:44
相关论文
共 25 条