The multiscale coarse-graining method. V. Isothermal-isobaric ensemble

被引:115
作者
Das, Avisek [1 ]
Andersen, Hans C. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; LOCAL-STRUCTURE MODEL; FORCE-FIELD; UNFOLDING TRANSITION; PROTEIN STRUCTURES; GLOBULAR-PROTEINS; POTENTIALS;
D O I
10.1063/1.3394862
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The multiscale coarse-graining (MS-CG) method is a method for determining the effective potential energy function for a coarse-grained (CG) model of a system using the data obtained from molecular dynamics simulation of the corresponding atomically detailed model. The MS-CG method, as originally formulated for systems at constant volume, has previously been given a rigorous statistical mechanical basis for the canonical ensemble. Here, we propose and test a version of the MS-CG method suitable for the isothermal-isobaric ensemble. The method shows how to construct an effective potential energy function for a CG system that generates the correct volume fluctuations as well as correct distribution functions in the configuration space of the CG sites. The formulation of the method requires introduction of an explicitly volume dependent term in the potential energy function of the CG system. The theory is applicable to simulations with isotropic volume fluctuations and cases where both the atomistic and CG models do not have any intramolecular constraints, but it is straightforward to extend the theory to more general cases. The present theory deals with systems that have short ranged interactions. (The extension to Coulombic forces using Ewald methods requires additional considerations.) We test the theory for constant pressure MS-CG simulations of a simple model of a solution. We show that both the volume dependent and the coordinate dependent parts of the potential are transferable to larger systems than the one used to obtain these potentials. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3394862]
引用
收藏
页数:12
相关论文
共 65 条
[1]   NON-INTERACTING LOCAL-STRUCTURE MODEL OF FOLDING AND UNFOLDING TRANSITION IN GLOBULAR-PROTEINS .2. APPLICATION TO TWO-DIMENSIONAL LATTICE PROTEINS [J].
ABE, H ;
GO, N .
BIOPOLYMERS, 1981, 20 (05) :1013-1031
[2]   Dual-resolution coarse-grained simulation of the bisphenol-A-polycarbonate/nickel interface -: art. no. 021807 [J].
Abrams, CF ;
Delle Site, L ;
Kremer, K .
PHYSICAL REVIEW E, 2003, 67 (02) :12
[3]   A structure-based coarse-grained model for polymer melts [J].
Akkermans, RLC ;
Briels, WJ .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (02) :1020-1031
[4]  
Allen M. P., 2017, COMPUTER SIMULATION
[5]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[6]   Multiscale modeling of biomolecular systems: in serial and in parallel [J].
Ayton, Gary S. ;
Noid, Will G. ;
Voth, Gregory A. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (02) :192-198
[7]   A new perspective on the coarse-grained dynamics of fluids [J].
Ayton, GS ;
Tepper, HL ;
Mirijanian, DT ;
Voth, GA .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (09) :4074-4088
[8]   Coarse-grained normal mode analysis in structural biology [J].
Bahar, I ;
Rader, AJ .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (05) :586-592
[9]  
Baschnagel J, 2000, ADV POLYM SCI, V152, P41
[10]   Coarse-grained molecular dynamics simulations of membrane proteins and peptides [J].
Bond, Peter J. ;
Holyoake, John ;
Ivetac, Anthony ;
Khalid, Syma ;
Sansom, Mark S. P. .
JOURNAL OF STRUCTURAL BIOLOGY, 2007, 157 (03) :593-605