High-Performance Membrane Capacitive Deionization Based on Metal-Organic Framework-Derived Hierarchical Carbon Structures

被引:44
作者
Shi, Wenhui [1 ,3 ]
Ye, Chenzeng [1 ]
Xu, Xilian [2 ]
Liu, Xiaoyue [1 ]
Ding, Meng [4 ]
Liu, Wenxian [2 ]
Cao, Xiehong [2 ]
Shen, Jiangnan [1 ,3 ]
Yang, Hui Ying [4 ]
Gao, Congjie [1 ,3 ]
机构
[1] Zhejiang Univ Technol, Ctr Membrane & Water Sci & Technol, Ocean Coll, 18 Chaowang Rd, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Coll Mat Sci & Engn, 18 Chaowang Rd, Hangzhou 310014, Zhejiang, Peoples R China
[3] Zhejiang Univ Technol, Huzhou Inst, Collaborat Innovat Ctr Membrane Separat & Water T, 1366 Hongfeng Rd, Huzhou 313000, Zhejiang, Peoples R China
[4] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
基金
中国国家自然科学基金;
关键词
HIGH-SURFACE-AREA; MESOPOROUS CARBON; BRACKISH-WATER; POROUS CARBONS; WASTE-WATER; ELECTRODES; GRAPHENE; SUPERCAPACITORS; DESALINATION; NANOTUBES;
D O I
10.1021/acsomega.8b01356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membrane capacitive deionization (MCDI) is a simple and highly energy efficient method to convert brackish water to clean water. In this work, a high-performance MCDI electrode architecture, which is composed of three-dimensional graphene networks and metal-organic frameworks (MOFs)-derived porous carbon rods, was prepared by a facile method. The obtained electrode material possesses not only the conducting networks for rapid electron transport but also the short diffusion length of ions, which exhibits excellent desalination performance with a high salt removal capacity, i.e., 37.6 mg g(-1) at 1.2 V in 1000 mg L-1 NaCl solution. This strategy can be extended to other MOF-derived MCDI electrodes.
引用
收藏
页码:8506 / 8513
页数:8
相关论文
共 61 条
[11]   Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization [J].
Gao, Tie ;
Zhou, Feng ;
Ma, Wei ;
Li, Haibo .
ELECTROCHIMICA ACTA, 2018, 263 :85-93
[12]   Complementary surface charge for enhanced capacitive deionization [J].
Gao, X. ;
Porada, S. ;
Omosebi, A. ;
Liu, K. -L. ;
Biesheuvel, P. M. ;
Landon, J. .
WATER RESEARCH, 2016, 92 :275-282
[13]   A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization [J].
Hassanvand, Armineh ;
Chen, George Q. ;
Webley, Paul A. ;
Kentish, Sandra E. .
WATER RESEARCH, 2018, 131 :100-109
[14]   Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane [J].
Hu, Chengzhi ;
Liu, Zhongtao ;
Lu, Xinglin ;
Sun, Jingqiu ;
Liu, Huijuan ;
Qu, Jiuhui .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (11) :4737-4745
[15]  
Huang D. P., 2016, SCI REP, V6
[16]   Carbon electrodes for capacitive deionization [J].
Huang, Zheng-Hong ;
Yang, Zhiyu ;
Kang, Feiyu ;
Inagaki, Michio .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) :470-496
[17]   Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer [J].
Kim, Yu-Jin ;
Choi, Jae-Hwan .
WATER RESEARCH, 2010, 44 (03) :990-996
[18]   Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination [J].
Li, Haibo ;
Zou, Linda .
DESALINATION, 2011, 275 (1-3) :62-66
[19]   Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes [J].
Li, Haibo ;
Gao, Yang ;
Pan, Likun ;
Zhang, Yanping ;
Chen, Yiwei ;
Sun, Zhuo .
WATER RESEARCH, 2008, 42 (20) :4923-4928
[20]   Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization [J].
Li, Jing ;
Ji, Bingxue ;
Jiang, Rui ;
Zhang, Panpan ;
Chen, Nan ;
Zhang, Guofeng ;
Qu, Liangti .
CARBON, 2018, 129 :95-103