The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces

被引:149
作者
Mainge, Paul-Emile [1 ]
机构
[1] Univ Antilles Guyane, GRIMAAG, Dept Sci Interfac, F-97230 Martinique, Fwi, France
关键词
Variational inequality; Bilevel optimization; Convex minimization; Viscosity approximation method; Fixed point method; Quasi-nonexpansive operator; FIXED-POINTS; STRONG-CONVERGENCE; THEOREMS; WEAK;
D O I
10.1016/j.camwa.2009.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the strong convergence of the viscosity approximation method, in Hilbert spaces, relatively to the computation of fixed points of operators in the wide class of quasi-nonexpansive mappings. Our convergence results improve previously known ones obtained for the class of nonexpansive mappings. (C) 2009 Elsevier Ltd, All rights reserved.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 19 条
[1]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[2]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[3]  
Byrne CL, 2004, INVERSE PROBL, V18, P441
[4]   Iterative approximation of fixed points of nonexpansive mappings [J].
Chidume, CE ;
Chidume, CO .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) :288-295
[5]  
Goebel K., 1990, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, V28
[6]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[7]   MANN ITERATION PROCESS IN HILBERT-SPACE [J].
HICKS, TL ;
KUBICEK, JD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 59 (03) :498-504
[8]   COMMON FIXED-POINT THEORY OF SINGLEVALUED MAPPINGS AND MULTIVALUED MAPPINGS [J].
ITOH, S ;
TAKAHASHI, W .
PACIFIC JOURNAL OF MATHEMATICS, 1978, 79 (02) :493-508
[9]  
LIONS PL, 1977, CR ACAD SCI A MATH, V284, P1357
[10]   Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization [J].
Mainge, Paul-Emile .
SET-VALUED ANALYSIS, 2008, 16 (7-8) :899-912