Hierarchy of quantum operations in manipulating coherence and entanglement

被引:2
作者
Yamasaki, Hayata [1 ,2 ,3 ]
Vijayan, Madhav Krishnan [4 ]
Hsieh, Min-Hsiu [4 ,5 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Photon Sci Ctr, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI, Boltzmanngasse 3, A-1090 Vienna, Austria
[3] Tech Univ Wien, Atominst, Stad Allee 2, A-1020 Vienna, Austria
[4] Univ Technol Sydney, Ctr Quantum Software & Informat UTS QSI, Sydney, NSW, Australia
[5] Hon Hai Quantum Comp Res Ctr, Taipei, Taiwan
基金
日本科学技术振兴机构;
关键词
STATE; DISTILLATION;
D O I
10.22331/q-2021-06-24-480
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum resource theory under different classes of quantum operations advances multiperspective understandings of inherent quantum-mechanical properties, such as quantum coherence and quantum entanglement. We establish hierarchies of different operations for manipulating coherence and entanglement in distributed settings, where at least one of the two spatially separated parties are restricted from generating coherence. In these settings, we introduce new classes of operations and also characterize those maximal, i.e., the resource-non-generating operations, progressing beyond existing studies on incoherent versions of local operations and classical communication and those of separable operations. The maximal operations admit a semidefinite-programming formulation useful for numerical algorithms, whereas the existing operations not. To establish the hierarchies, we prove a sequence of inclusion relations among the operations by clarifying tasks where separation of the operations appears. We also demonstrate an asymptotically non-surviving separation of the operations in the hierarchy in terms of performance of the task of assisted coherence distillation, where a separation in a one-shot scenario vanishes in the asymptotic limit. Our results serve as fundamental analytical and numerical tools to investigate interplay between coherence and entanglement under different operations in the resource theory.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 79 条
[31]   Quantum computational supremacy [J].
Harrow, Aram W. ;
Montanaro, Ashley .
NATURE, 2017, 549 (7671) :203-209
[32]   Partial quantum information [J].
Horodecki, M ;
Oppenheim, J ;
Winter, A .
NATURE, 2005, 436 (7051) :673-676
[33]   Quantum state merging and negative information [J].
Horodecki, Michal ;
Oppenheim, Jonathan ;
Winter, Andreas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (01) :107-136
[34]   Separability criterion and inseparable mixed states with positive partial transposition [J].
Horodecki, P .
PHYSICS LETTERS A, 1997, 232 (05) :333-339
[35]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942
[36]   Vibrations, quanta and biology [J].
Huelga, S. F. ;
Plenio, M. B. .
CONTEMPORARY PHYSICS, 2013, 54 (04) :181-207
[37]   General Quantum Resource Theories: Distillation, Formation and Consistent Resource Measures [J].
Kuroiwa, Kohdai ;
Yamasaki, Hayata .
QUANTUM, 2020, 4
[38]   Assisted concentration of Gaussian resources [J].
Lami, Ludovico ;
Takagi, Ryuji ;
Adesso, Gerardo .
PHYSICAL REVIEW A, 2020, 101 (05)
[39]   Completing the Grand Tour of Asymptotic Quantum Coherence Manipulation [J].
Lami, Ludovico .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (04) :2165-2183
[40]  
Lofberg J., 2004, 2004 IEEE International Symposium on Computer Aided Control Systems Design (IEEE Cat. No.04TH8770), P284, DOI 10.1109/CACSD.2004.1393890