Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin-Voigt damping

被引:3
作者
Hong, Gimyong [1 ]
Hong, Hakho [2 ]
机构
[1] Univ Sci, Fac Math, Pyongyang, North Korea
[2] State Acad Sci, Inst Math, Pyongyang, North Korea
关键词
Transmission problem; Kirchhoff plate; Wave equation; Kelvin– Voigt damping; Energy decay; Carleman estimate;
D O I
10.1007/s00028-021-00682-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the stabilization for the Kirchhoff plate and equations connected by transmission conditions. We show that the energy of the transmission system is stable with logarithmic decay rate when feedback control acts on the small part of the plate as a viscoelastic material with Kelvin-Voigt constitutive relation. The proof is based on a new resolvent estimate by using some careful analysis for Kirchhoff plate-wave transmission system.
引用
收藏
页码:2239 / 2264
页数:26
相关论文
共 34 条
  • [1] Ammari K., 2009, Cubo, V11, P39
  • [2] Stabilization of a transmission wave/plate equation
    Ammari, Kais
    Nicaise, Serge
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (03) : 707 - 727
  • [3] FEEDBACK STABILIZATION OF A COUPLED STRING-BEAM SYSTEM
    Ammari, Kais
    Jellouli, Mohamed
    Mehrenberger, Michel
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2009, 4 (01) : 19 - 34
  • [4] [Anonymous], 2007, ELECT J DIFFERENTIAL
  • [5] [Anonymous], 1989, Boundary Stabilization of Thin Plates
  • [6] [Anonymous], ARXIV180510430
  • [7] [Anonymous], 1991, ONE PARAMETER SEMIGR
  • [8] Non-uniform stability for bounded semi-groups on Banach spaces
    Batty, Charles J. K.
    Duyckaerts, Thomas
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) : 765 - 780
  • [9] Bellassoued M, 2003, ASYMPTOTIC ANAL, V35, P257
  • [10] Cavalcanti M., 2017, ELECT J DIFFERENTIAL, V2017, P1