Effect of reservoir geometry on vortex trapping of cancer cells

被引:25
作者
Paie, P. [1 ,2 ]
Che, J. [3 ,4 ]
Di Carlo, D. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Politecn Milan, Ist Foton & Nanotecnol, CNR, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Univ Calif Los Angeles, Dept Bioengn, 420 Westwood Plaza,5121 Engn 5, Los Angeles, CA 90095 USA
[4] Vortex Biosci Inc, 1490 Obrien Dr,Suite E, Menlo Pk, CA 94025 USA
[5] Univ Calif Los Angeles, Dept Mech Engn, 420 Westwood Plaza,5121 Engn 5, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Calif NanoSyst Inst, 570 Westwood Plaza, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, 10833 Le Conte Ave, Los Angeles, CA 90024 USA
关键词
Inertial microfluidics; Size-based separation; Vortex-aided sorting; Trapping stability optimization; CIRCULATING TUMOR-CELLS; BREAST-CANCER; BLOOD; FLOW; SEPARATION;
D O I
10.1007/s10404-017-1942-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vortex-aided particle separation is a powerful method to efficiently isolate circulating tumor cells from blood, since it allows high throughput and continuous sample separation, with no need for time-consuming sample preprocessing. With this approach, only the larger particles from a heterogeneous sample will be stably trapped in reservoirs that expand from a straight microfluidic channel, allowing for efficient particle sorting along with simultaneous concentration. A possible limitation is related to the loss of particles from vortex traps due to particle-particle interactions that limit the final cellularity of the enriched solution. It is fundamental to minimize this issue considering that a scant number of target cells are diluted in highly cellular blood. In this work, we present a device for size-based particle separation, which exploits the well-consolidated vortex-aided sorting, but new reservoir layouts are presented and investigated in order to increase the trapping efficiency of the chip. Through simulations and experimental validations, we have been able to optimize the device design to increase the maximum number of particles that can be stably trapped in each reservoir and therefore the total efficiency of the chip.
引用
收藏
页数:11
相关论文
共 33 条
  • [21] Inertial Focusing for Tumor Antigen-Dependent and -Independent Sorting of Rare Circulating Tumor Cells
    Ozkumur, Emre
    Shah, Ajay M.
    Ciciliano, Jordan C.
    Emmink, Benjamin L.
    Miyamoto, David T.
    Brachtel, Elena
    Yu, Min
    Chen, Pin-i
    Morgan, Bailey
    Trautwein, Julie
    Kimura, Anya
    Sengupta, Sudarshana
    Stott, Shannon L.
    Karabacak, Nezihi Murat
    Barber, Thomas A.
    Walsh, John R.
    Smith, Kyle
    Spuhler, Philipp S.
    Sullivan, James P.
    Lee, Richard J.
    Ting, David T.
    Luo, Xi
    Shaw, Alice T.
    Bardia, Aditya
    Sequist, Lecia V.
    Louis, David N.
    Maheswaran, Shyamala
    Kapur, Ravi
    Haber, Daniel A.
    Toner, Mehmet
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (179)
  • [22] Circulating tumour cells in cancer patients: challenges and perspectives
    Pantel, Klaus
    Alix-Panabieres, Catherine
    [J]. TRENDS IN MOLECULAR MEDICINE, 2010, 16 (09) : 398 - 406
  • [23] Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer
    Paris, Pamela L.
    Kobayashi, Yasuko
    Zhao, Qiang
    Zeng, Wei
    Sridharan, Shivaranjani
    Fan, Tina
    Adler, Howard L.
    Yera, Emmanuel R.
    Zarrabi, M. H.
    Zucker, Stanley
    Simko, Jeffry
    Chen, Wen-Tien
    Rosenberg, Jonathan
    [J]. CANCER LETTERS, 2009, 277 (02) : 164 - 173
  • [24] Separation of cancer cells from white blood cells by pinched flow fractionation
    Podenphant, Marie
    Ashley, Neil
    Koprowska, Kamila
    Mir, Kalim U.
    Zalkovskij, Maksim
    Bilenberg, Brian
    Bodmer, Walter
    Kristensen, Anders
    Marie, Rodolphe
    [J]. LAB ON A CHIP, 2015, 15 (24) : 4598 - 4606
  • [25] Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer:: A validation study of the CellSearch system
    Riethdorf, Sabine
    Fritsche, Herbert
    Mueller, Volkmar
    Rau, Thomas
    Schindibeck, Christian
    Rack, Brigitte
    Janni, Wolfgang
    Coith, Cornelia
    Beck, Katrin
    Jaenicke, Fritz
    Jackson, Summer
    Gornet, Terrie
    Cristofanilli, Massimo
    Pantel, Klaus
    [J]. CLINICAL CANCER RESEARCH, 2007, 13 (03) : 920 - 928
  • [26] Detection and HER2 Expression of Circulating Tumor Cells: Prospective Monitoring in Breast Cancer Patients Treated in the Neoadjuvant GeparQuattro Trial
    Riethdorf, Sabine
    Mueller, Volkmar
    Zhang, Liling
    Rau, Thomas
    Loibl, Sibylle
    Komor, Martina
    Roller, Marc
    Huober, Jens
    Fehm, Tanja
    Schrader, Iris
    Hilfrich, Joern
    Holms, Frank
    Tesch, Hans
    Eidtmann, Holger
    Untch, Michael
    von Minckwitz, Gunter
    Pantel, Klaus
    [J]. CLINICAL CANCER RESEARCH, 2010, 16 (09) : 2634 - 2645
  • [27] Size-selective collection of circulating tumor cells using Vortex technology
    Sollier, Elodie
    Go, Derek E.
    Che, James
    Gossett, Daniel R.
    O'Byrne, Sean
    Weaver, Westbrook M.
    Kummer, Nicolas
    Rettig, Matthew
    Goldman, Jonathan
    Nickols, Nicholas
    McCloskey, Susan
    Kulkarni, Rajan P.
    Di Carlo, Dino
    [J]. LAB ON A CHIP, 2014, 14 (01) : 63 - 77
  • [28] Rapid prototyping polymers for microfluidic devices and high pressure injections
    Sollier, Elodie
    Murray, Coleman
    Maoddi, Pietro
    Di Carlo, Dino
    [J]. LAB ON A CHIP, 2011, 11 (22) : 3752 - 3765
  • [29] Isolation of circulating tumor cells using a microvortex-generating herringbone-chip
    Stott, Shannon L.
    Hsu, Chia-Hsien
    Tsukrov, Dina I.
    Yu, Min
    Miyamoto, David T.
    Waltman, Belinda A.
    Rothenberg, S. Michael
    Shah, Ajay M.
    Smas, Malgorzata E.
    Korir, George K.
    Floyd, Frederick P., Jr.
    Gilman, Anna J.
    Lord, Jenna B.
    Winokur, Daniel
    Springer, Simeon
    Irimia, Daniel
    Nagrath, Sunitha
    Sequist, Lecia V.
    Lee, Richard J.
    Isselbacher, Kurt J.
    Maheswaran, Shyamala
    Haber, Daniel A.
    Toner, Mehmet
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) : 18392 - 18397
  • [30] Size-based microfluidic multimodal microparticle sorter
    Wang, Xiao
    Papautsky, Ian
    [J]. LAB ON A CHIP, 2015, 15 (05) : 1350 - 1359