Effect of reservoir geometry on vortex trapping of cancer cells

被引:25
作者
Paie, P. [1 ,2 ]
Che, J. [3 ,4 ]
Di Carlo, D. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Politecn Milan, Ist Foton & Nanotecnol, CNR, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Univ Calif Los Angeles, Dept Bioengn, 420 Westwood Plaza,5121 Engn 5, Los Angeles, CA 90095 USA
[4] Vortex Biosci Inc, 1490 Obrien Dr,Suite E, Menlo Pk, CA 94025 USA
[5] Univ Calif Los Angeles, Dept Mech Engn, 420 Westwood Plaza,5121 Engn 5, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Calif NanoSyst Inst, 570 Westwood Plaza, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, 10833 Le Conte Ave, Los Angeles, CA 90024 USA
关键词
Inertial microfluidics; Size-based separation; Vortex-aided sorting; Trapping stability optimization; CIRCULATING TUMOR-CELLS; BREAST-CANCER; BLOOD; FLOW; SEPARATION;
D O I
10.1007/s10404-017-1942-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vortex-aided particle separation is a powerful method to efficiently isolate circulating tumor cells from blood, since it allows high throughput and continuous sample separation, with no need for time-consuming sample preprocessing. With this approach, only the larger particles from a heterogeneous sample will be stably trapped in reservoirs that expand from a straight microfluidic channel, allowing for efficient particle sorting along with simultaneous concentration. A possible limitation is related to the loss of particles from vortex traps due to particle-particle interactions that limit the final cellularity of the enriched solution. It is fundamental to minimize this issue considering that a scant number of target cells are diluted in highly cellular blood. In this work, we present a device for size-based particle separation, which exploits the well-consolidated vortex-aided sorting, but new reservoir layouts are presented and investigated in order to increase the trapping efficiency of the chip. Through simulations and experimental validations, we have been able to optimize the device design to increase the maximum number of particles that can be stably trapped in each reservoir and therefore the total efficiency of the chip.
引用
收藏
页数:11
相关论文
共 33 条
  • [1] Circulating Tumor Cells: Liquid Biopsy of Cancer
    Alix-Panabieres, Catherine
    Pantel, Klaus
    [J]. CLINICAL CHEMISTRY, 2013, 59 (01) : 110 - 118
  • [2] [Anonymous], 1869, Aust Med J
  • [3] Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation
    Bhagat, Ali Asgar S.
    Hou, Han Wei
    Li, Leon D.
    Lim, Chwee Teck
    Han, Jongyoon
    [J]. LAB ON A CHIP, 2011, 11 (11) : 1870 - 1878
  • [4] Biophysical isolation and identification of circulating tumor cells
    Che, James
    Yu, Victor
    Garon, Edward B.
    Goldman, Jonathan W.
    Di Carlo, Dino
    [J]. LAB ON A CHIP, 2017, 17 (08) : 1452 - 1461
  • [5] Microfluidic Purification and Concentration of Malignant Pleural Effusions for Improved Molecular and Cytomorphological Diagnostics
    Che, James
    Mach, Albert J.
    Go, Derek E.
    Talati, Ish
    Ying, Yong
    Rao, Jianyu
    Kulkarni, Rajan P.
    Di Carlo, Dino
    [J]. PLOS ONE, 2013, 8 (10):
  • [6] Microfluidic approaches for cancer cell detection, characterization, and separation
    Chen, Jian
    Li, Jason
    Sun, Yu
    [J]. LAB ON A CHIP, 2012, 12 (10) : 1753 - 1767
  • [7] Circulating tumor cells: the Grand Challenge
    den Toonder, Jaap
    [J]. LAB ON A CHIP, 2011, 11 (03) : 375 - 377
  • [8] High efficiency vortex trapping of circulating tumor cells
    Dhar, Manjima
    Wong, Jessica
    Karimi, Armin
    Che, James
    Renier, Corinne
    Matsumoto, Melissa
    Triboulet, Melanie
    Garon, Edward B.
    Goldman, Jonathan W.
    Rettig, Matthew B.
    Jeffrey, Stefanie S.
    Kulkarni, Rajan P.
    Sollier, Elodie
    Di Carlo, Dino
    [J]. BIOMICROFLUIDICS, 2015, 9 (06):
  • [9] Inertial microfluidics
    Di Carlo, Dino
    [J]. LAB ON A CHIP, 2009, 9 (21) : 3038 - 3046
  • [10] Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift
    Geislinger, Thomas M.
    Franke, Thomas
    [J]. BIOMICROFLUIDICS, 2013, 7 (04):