Efficient 3D finite element analysis of dental restorative procedures using micro-CT data

被引:160
|
作者
Magne, Pascal [1 ]
机构
[1] Univ So Calif, Div Primary Oral Hlth Care, Sch Dent, Los Angeles, CA 90089 USA
关键词
finite element analysis; restorative dentistry; cuspal flexure; composite resins; porcelain inlays;
D O I
10.1016/j.dental.2006.03.013
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives. This investigation describes a rapid method for the generation of finite element models of dental structures and restorations. Methods. An intact mandibular molar was digitized with a micro-CT scanner. Surface contours of enamel and dentin were fitted following tooth segmentation based on pixel density using an interactive medical image control system. Stereolithography (STL) files of enamel and dentin surfaces were then remeshed to reduce mesh density and imported in a rapid prototyping software, where Boolean operations were used to assure the interfacial mesh congruence (dentinoenamel junction) and simulate different cavity preparations (MO/MOD preparations, endodontic access) and restorations (feldspathic porcelain and composite resin inlays). The different tooth parts were then imported in a finite element software package to create 3D solid models. The potential use of the model was demonstrated using nonlinear contact analysis to simulate occlusal loading. Cuspal deformation was measured at different restorative steps and correlated with existing experimental data for model validation and optimization. Results. Five different models were validated by existing experimental data. Cuspal widening (between mesial cusps) at 100 N load ranged from 0.4 mu m for the unrestored tooth, 9-12 mu m for MO, MOD cavities, to 12-21 mu m for endodontic access cavities. Placement of an MOD adhesive restoration in porcelain resulted in 100% cuspal stiffness recovery (0.4 mu m of cuspal widening at 100 N) while the composite resin inlay allowed for a partial recuperation of cusp stabilization (1.3 mu m of cuspal widening at 100 N). Significance. The described method can generate detailed and valid three dimensional finite element models of a molar tooth with different cavities and restorative materials. This method is rapid and can readily be used for other medical (and dental) applications. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 50 条
  • [21] 3D Finite Element Analysis of a Three Phase Power Transformer
    Constantin, Dorinel
    Nicolae, Petre-Marian
    Nitu, Cristina-Maria
    2013 IEEE EUROCON, 2013, : 1542 - 1546
  • [22] 3D finite element analysis of particle-reinforced aluminum
    Shen, H
    Lissenden, CJ
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 338 (1-2): : 271 - 281
  • [23] 3D Finite Element Analysis for Magnetic Flux Leakage Testing
    Song, Qiang
    ADVANCED MANUFACTURING SYSTEMS, PTS 1-3, 2011, 201-203 : 1623 - 1626
  • [24] 3D Finite element analysis of end - plate steel joints
    Drosopoulos, G. A.
    Stavroulakis, G. E.
    Abdalla, K. M.
    STEEL AND COMPOSITE STRUCTURES, 2012, 12 (02) : 93 - 115
  • [25] A 3D finite element analysis of the hot rolling of strip with lubrication
    Tieu, AK
    Jiang, ZY
    Lu, C
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 125 : 638 - 644
  • [26] Stress Distribution Pattern in Mandibular Overdenture Designs Supported by Three Dental Implants: A 3D Finite Element Analysis
    Aminianpour, Negin
    Alikhasi, Marzieh
    Kasari, Mostafa Shabanpour
    Yousefi, Hashem
    Siadat, Hakimeh
    CLINICAL AND EXPERIMENTAL DENTAL RESEARCH, 2025, 11 (01):
  • [27] Influence of restorative procedures on endodontically treated premolars: Finite element analysis of a CT-scan based three-dimensional model
    Maravic, Tatjana
    Vasiljevic, Darko
    Kantardzic, Ivana
    Lainovic, Tijana
    Luzanin, Ognjan
    Blazic, Larisa
    DENTAL MATERIALS JOURNAL, 2018, 37 (03) : 493 - 500
  • [28] 3D finite element computational fracture analysis of an MCTS specimen
    Li Q.
    Qi G.
    Zhu L.
    He S.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2011, 32 (09): : 1157 - 1162
  • [29] Finite element analysis of micro-scale CSP solder joint in 3D packaging under random vibration
    Han, Li-shuai
    Huang, Chun-yue
    Yin, Rui
    Ying, Liang
    Huang, Gen-xin
    Li, Tian-ming
    2017 18TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2017, : 632 - 637
  • [30] A comparison of 2D and 3D finite element analysis of a restored tooth
    Romeed, SA
    Fok, SL
    Wilson, NHF
    JOURNAL OF ORAL REHABILITATION, 2006, 33 (03) : 209 - 215