Efficient 3D finite element analysis of dental restorative procedures using micro-CT data

被引:160
|
作者
Magne, Pascal [1 ]
机构
[1] Univ So Calif, Div Primary Oral Hlth Care, Sch Dent, Los Angeles, CA 90089 USA
关键词
finite element analysis; restorative dentistry; cuspal flexure; composite resins; porcelain inlays;
D O I
10.1016/j.dental.2006.03.013
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives. This investigation describes a rapid method for the generation of finite element models of dental structures and restorations. Methods. An intact mandibular molar was digitized with a micro-CT scanner. Surface contours of enamel and dentin were fitted following tooth segmentation based on pixel density using an interactive medical image control system. Stereolithography (STL) files of enamel and dentin surfaces were then remeshed to reduce mesh density and imported in a rapid prototyping software, where Boolean operations were used to assure the interfacial mesh congruence (dentinoenamel junction) and simulate different cavity preparations (MO/MOD preparations, endodontic access) and restorations (feldspathic porcelain and composite resin inlays). The different tooth parts were then imported in a finite element software package to create 3D solid models. The potential use of the model was demonstrated using nonlinear contact analysis to simulate occlusal loading. Cuspal deformation was measured at different restorative steps and correlated with existing experimental data for model validation and optimization. Results. Five different models were validated by existing experimental data. Cuspal widening (between mesial cusps) at 100 N load ranged from 0.4 mu m for the unrestored tooth, 9-12 mu m for MO, MOD cavities, to 12-21 mu m for endodontic access cavities. Placement of an MOD adhesive restoration in porcelain resulted in 100% cuspal stiffness recovery (0.4 mu m of cuspal widening at 100 N) while the composite resin inlay allowed for a partial recuperation of cusp stabilization (1.3 mu m of cuspal widening at 100 N). Significance. The described method can generate detailed and valid three dimensional finite element models of a molar tooth with different cavities and restorative materials. This method is rapid and can readily be used for other medical (and dental) applications. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 50 条
  • [1] Incisor compliance following operative procedures: A rapid 3-D finite element analysis using micro-CT data
    Magne, Pascal
    Tan, Derek T.
    JOURNAL OF ADHESIVE DENTISTRY, 2008, 10 (01) : 49 - 56
  • [2] Comparative 3D finite element analysis of intramedullary fixation versus locking plate fixation in calcaneal fractures using micro-CT image technology
    Wu, Jiajun
    Zhang, Linyuan
    Shen, Chao
    Wang, Xiuhui
    Zhou, Xiaoxiao
    BMC MUSCULOSKELETAL DISORDERS, 2024, 25 (01)
  • [3] Assessment of Bone Quality using Finite Element Analysis Based upon Micro-CT Images
    Rhee, Yumie
    Hur, June-Huyck
    Won, Ye-Yeon
    Lim, Sung-Kil
    Beak, Myong-Hyun
    Cui, Wen-Quan
    Kim, Kwang-Gyoun
    Kim, Young Eun
    CLINICS IN ORTHOPEDIC SURGERY, 2009, 1 (01) : 40 - 47
  • [4] Zirconia-based dental crown to support a removable partial denture: a three-dimensional finite element analysis using contact elements and micro-CT data
    Rocha, Eduardo Passos
    Anchieta, Rodolfo Bruniera
    de Almeida, Erika Oliveira
    Freitas, Amilcar Chagas, Jr.
    Martini, Ana Paula
    Sotto-Maior, Bruno Sales
    Luersen, Marco Antonio
    Ko, Ching Chang
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2015, 18 (16) : 1744 - 1752
  • [5] Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis
    Shefelbine, SJ
    Simon, U
    Claes, L
    Gold, A
    Gabet, Y
    Bab, I
    Müller, R
    Augat, P
    BONE, 2005, 36 (03) : 480 - 488
  • [6] Research of Shark Concept Using 3D Finite Element Analysis
    Sejejs, Karlis
    Kamolins, Edmunds
    Gulbis, Karlis
    2018 IEEE 59TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2018,
  • [7] 3D Finite Element Analysis of Prestressed Cutting
    Peng, Rui Tao
    Lu, Fang
    Tang, Xin Zi
    Tan, Yuan Qiang
    MANUFACTURING ENGINEERING AND AUTOMATION II, PTS 1-3, 2012, 591-593 : 766 - +
  • [8] 3D Finite Element Analysis on DongQing CFRD
    Sun, Dawei
    Wang, Kangping
    Yao, Huiqin
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 3478 - 3481
  • [9] Micro-CT based trans-scale damage analysis of 3D braided composites with pore defects
    Ge, Lei
    Li, Huimin
    Zhong, Jiehua
    Zhang, Chun
    Fang, Daining
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 211 (211)
  • [10] AUTOMATIC CONSTRUCTION OF GROUND MODELS FOR 3D FINITE ELEMENT ANALYSIS BY DATA PROCESSING
    Tamura, Ayana
    Takeyama, Tomohide
    INTERNATIONAL JOURNAL OF GEOMATE, 2023, 24 (106): : 37 - 45