New localized excitations and cross-like fractal structures to the (2+1)-dimensional Broer-Kaup system

被引:5
作者
Li, Zitian [1 ]
机构
[1] Qujing Normal Univ, Coll Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2014年 / 83卷 / 03期
关键词
Broer-Kaup equations; improved mapping method; variable separation approach; fractal structures; TRAVELING-WAVE SOLUTIONS; SOLITON-SOLUTIONS; RESONANCE;
D O I
10.1007/s12043-014-0784-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A broad general variable separation solution with two arbitrary lower-dimensional functions of the (2+1)-dimensional Broer-Kaup (BK) equations was derived by means of a projective equation method and a variable separation hypothesis. Based on the derived variable separation excitation, some new special types of localized solutions such as oscillating solitons, instanton-like and cross-like fractal structures are revealed by selecting appropriate functions of the general variable separation solution.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 22 条
[11]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[12]   Exact periodic cross-kink wave solutions and breather type of two-solitary wave solutions for the (3+1)-dimensional potential-YTSF equation [J].
Li, Zitian ;
Dai, Zhengde .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) :1939-1945
[13]   New exact kink solutions and periodic form solutions for a generalized Zakharov-Kuznetsov equation with variable coefficients [J].
Li, Zitian ;
Zhang, Xiufeng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3418-3422
[14]   New exact homoclinic wave and periodic wave solutions for the Ginzburg-Landau equation [J].
Li, Zitian .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) :1549-1554
[15]   Non-local symmetries via Darboux transformations [J].
Lou, SY ;
Hu, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05) :L95-L100
[16]   Travelling wave solutions of nonlinear partial equations by using the first integral method [J].
Lu, Bin ;
Zhang, HongQing ;
Xie, FuDing .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (04) :1329-1336
[17]   On a 2+1-Dimensional Whitham-Broer-Kaup System: A Resonant NLS Connection [J].
Rogers, Colin ;
Pashaev, Oktay .
STUDIES IN APPLIED MATHEMATICS, 2011, 127 (02) :141-152
[18]   New Exact Solutions for the (2+1)-Dimensional Broer-Kaup-Kupershmidt Equations [J].
Song, Ming ;
Li, Shaoyong ;
Cao, Jun .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[19]   MULTIPLE SOLITON SOLUTIONS FOR THREE SYSTEMS OF BROER-KAUP-KUPERSHMIDT EQUATIONS DESCRIBING NONLINEAR AND DISPERSIVE LONG GRAVITY WAVES [J].
Wazwaz, Abdul Majid .
MODERN PHYSICS LETTERS B, 2012, 26 (20)
[20]  
Ying JP, 2003, CHINESE PHYS LETT, V20, P1448, DOI 10.1088/0256-307X/20/9/311