Microplastic Fiber Emissions From Wastewater Effluents: Abundance, Transport Behavior and Exposure Risk for Biota in an Arctic Fjord

被引:42
作者
Herzke, Dorte [1 ,2 ]
Ghaffari, Peygham [3 ]
Sundet, Jan Henry [4 ]
Tranang, Caroline Aas [4 ]
Halsband, Claudia [3 ]
机构
[1] NILU, Fram Ctr, Norwegian Inst Air Res, Tromso, Norway
[2] UiT Arctic Univ Norway, Inst Arct & Marine Biol, Tromso, Norway
[3] Fram Ctr, Akvaplan Niva, Tromso, Norway
[4] Inst Marine Res, Tromso, Norway
关键词
microplastic fiber; plankton; benthos; FVCOM model; encounter risk; arctic fjord; hydrodynamic model; waste water effluent; MARINE-ENVIRONMENT; SYNTHETIC MICROFIBERS; INGESTION; CONTAMINATION; SVALBARD; SEDIMENTATION; POLLUTION; RELEASE; IMPACT; LAKE;
D O I
10.3389/fenvs.2021.662168
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microfibers (MF) are one of the major classes of microplastic found in the marine environment on a global scale. Very little is known about how they move and distribute from point sources such as wastewater effluents into the ocean. We chose Adventfjorden near the settlement of Longyearbyen on the Arctic Svalbard archipelago as a case study to investigate how microfibers emitted with untreated wastewater will distribute in the fjord, both on a spatial and temporal scale. Fiber abundance in the effluent was estimated from wastewater samples taken during two one-week periods in June and September 2017. Large emissions of MFs were detected, similar in scale to a modern WWTP serving 1.3 million people and providing evidence of the importance of untreated wastewater from small settlements as major local sources for MF emissions in the Arctic. Fiber movement and distribution in the fjord mapped using an online-coupled hydrodynamic-drift model (FVCOM-FABM). For parameterizing a wider spectrum of fibers from synthetic to wool, four different density classes of MFs, i.e., buoyant, neutral, sinking, and fast sinking fibers are introduced to the modeling framework. The results clearly show that fiber class has a large impact on the fiber distributions. Light fibers remained in the surface layers and left the fjord quickly with outgoing currents, while heavy fibers mostly sank to the bottom and deposited in the inner parts of the fjord and along the northern shore. A number of accumulation sites were identified within the fjord. The southern shore, in contrast, was much less affected, with low fiber concentrations throughout the modeling period. Fiber distributions were then compared with published pelagic and benthic fauna distributions in different seasons at selected stations around the fjord. The ratios of fibers to organisms showed a very wide range, indicating hot spots of encounter risk for pelagic and benthic biota. This approach, in combination with in-situ ground-truthing, can be instrumental in understanding microplastic pathways and fate in fjord systems and coastal areas and help authorities develop monitoring and mitigation strategies for microfiber and microplastic pollution in their local waters.
引用
收藏
页数:14
相关论文
共 53 条
[1]   The Widespread Environmental Footprint of Indigo Denim Microfibers from Blue Jeans [J].
Athey, Samantha N. ;
Adams, Jennifer K. ;
Erdle, Lisa M. ;
Jantunen, Liisa M. ;
Helm, Paul A. ;
Finkelstein, Sarah A. ;
Diamond, Miriam L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2020, 7 (11) :840-847
[2]   Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion [J].
Bagaev, A. ;
Mizyuk, A. ;
Khatmullina, L. ;
Isachenko, I. ;
Chubarenko, I. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 599 :560-571
[3]   Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins [J].
Barrows, A. P. W. ;
Cathey, S. E. ;
Petersen, C. W. .
ENVIRONMENTAL POLLUTION, 2018, 237 :275-284
[4]   Textile microfibers reaching aquatic environments: A new estimation approach [J].
Belzagui, Francisco ;
Gutierrez-Bouzan, Carmen ;
Alvarez-Sanchez, Antonio ;
Vilaseca, Mercedes .
ENVIRONMENTAL POLLUTION, 2020, 265
[5]   Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M-galloprovincialis) [J].
Brate, Inger Lise N. ;
Blazquez, Mercedes ;
Brooks, Steven J. ;
Thomas, Kevin V. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 626 :1310-1318
[6]   Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks [J].
Browne, Mark Anthony ;
Crump, Phillip ;
Niven, Stewart J. ;
Teuten, Emma ;
Tonkin, Andrew ;
Galloway, Tamara ;
Thompson, Richard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (21) :9175-9179
[7]  
Chen CS, 2003, J ATMOS OCEAN TECH, V20, P159, DOI 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO
[8]  
2
[9]  
Cochrane S., 2020, 20206202001 NIVA
[10]   Microplastics, microfibres and nanoplastics cause variable sub-lethal responses in mussels (Mytilus spp.) [J].
Cole, Matthew ;
Liddle, Corin ;
Consolandi, Giulia ;
Drago, Claudia ;
Hird, Cameron ;
Lindeque, Penelope K. ;
Galloway, Tamara S. .
MARINE POLLUTION BULLETIN, 2020, 160