APPROXIMATION PROPERTIES OF MODIFIED KANTOROVICH TYPE (p, q)-BERNSTEIN OPERATORS

被引:0
|
作者
Yu, Kan [1 ]
Cheng, Wentao [1 ]
Fan, Ligang [1 ]
Zhou, Xiaoling [1 ]
机构
[1] Anqing Normal Univ, Sch Math & Phys, Anqing 246133, Anhui, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 02期
基金
中国国家自然科学基金;
关键词
modified; (p; q)-Bernstein-Kantorovich operators; local approximation; modulus of smoothness; rate of convergence; Voronovskaja type theorem;
D O I
10.7153/jmi-2021-15-40
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we construct modified Bernstein-Kantorovich operators by adding a parameter alpha and using new method and idea based on (p,q)-calculus. We establish the moments and the central moments of the operators. Then, we obtain a Korovkin type approximation theorem and discuss two local approximation theorems using Steklov mean and K-functional in terms of modulus of smoothness. Next, the rate of convergence on continuous function space, differentiable function space and Lipschitz function space are studied. Finally, Voronovskaja type theorem is also investigated.
引用
收藏
页码:547 / 558
页数:12
相关论文
共 50 条
  • [1] APPROXIMATION PROPERTIES FOR MODIFIED q-BERNSTEIN-KANTOROVICH OPERATORS
    Mursaleen, M.
    Khan, Faisal
    Khan, Asif
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (09) : 1178 - 1197
  • [2] APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-KANTOROVICH OPERATORS
    Acu, Ana Maria
    Agrawal, P. N.
    Kumar, Dharmendra
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 2170 - 2197
  • [3] Approximation properties for King's type modified q-Bernstein-Kantorovich operators
    Mursaleen, M.
    Khan, Faisal
    Khan, Asif
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) : 5242 - 5252
  • [4] On statistical approximation properties of Kantorovich type q-Bernstein operators
    Dalmanoglu, Oezge
    Dogru, Oguen
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 760 - 771
  • [5] Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 655 - 662
  • [6] Approximation by Kantorovich type q-Bernstein operators
    Dalmanoglu, Ozge
    APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 113 - +
  • [7] Approximation properties of (p, q)-Bernstein type operators
    Finta, Zoltan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 222 - 232
  • [8] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [9] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [10] Statistical approximation of modified Schurer-type q-Bernstein Kantorovich operators
    Lin, Qiu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,